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Abstract

We prove polynomial density theorems for a broad class of classical function spaces on domains
Ω ⊂ Rn, in both local (compact-open) and global (Banach) topologies. In the local regime we show
that restrictions of polynomials are dense in Ck(Ω), C∞(Ω), and Lp

loc(Ω), W k,p
loc (Ω) for arbitrary open

Ω.
In the global regime on bounded domains we re-prove the classical density results for C0(Ω̄)

(Stone-Weierstrass) and Lp(Ω). For higher-differentiable function spaces (k ≥ 1), polynomial density
depends on regularity of the domain. We show density in Ck

b (Ω̄) for Ck-extension domains (e.g.
smooth boundary) and in W k,p(Ω) for Sobolev-extension domains (e.g. Lipschitz boundary).

The proofs are organized around a single approximation pipeline: extension, compact truncation,
analytic regularization, and Taylor approximation. This yields straightforward, standard and unified
arguments that make explicit the domain assumptions underlying several folklore polynomial-density
statements; we also record counterexamples showing that such hypotheses are necessary for global
approximation in strong norms.

Outline
1 Introduction 1
2 Setting 2

2.1 Local Function Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Global Function Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Extension Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Approximation Methods 6
3.1 Tapered Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Radial Cutoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Low-Pass Filter via Heat Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.4 Taylor Truncation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Approximation Theorems 9
5 Counterexamples 10

1 Introduction

The modern theory of polynomial approximation begins with Weierstrass’ approximation theorem (1885),
asserting that every continuous function on a closed interval can be uniformly approximated by algebraic
polynomials [Wei85]. Stone’s abstraction, the Stone-Weierstrass theorem, identifies the conceptual mech-
anism behind this phenomenon: on a compact Hausdorff space X, a subalgebra of C(X) that contains
the constants and separates points is dense in C(X) [Sto48]. These results explain why, on compact
subsets K ⊂ Rn, polynomials (and trigonometric polynomials) are canonical dense subclasses in C(K);
see, for example, [Che66] [Tim63].
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Beyond the C0 setting, approximation with derivatives becomes subtler. For Ck-spaces on manifolds,
Nachbin studied when Ck-subalgebras are dense in Ck(M) under structural hypotheses [Nac65]. In
Sobolev theory, smooth approximation is a basic tool (the Meyers-Serrin theorem, H = W ), and standard
references for the Sobolev scale and its approximation machinery include Adams-Fournier [AF03].
In day-to-day analysis and PDEs one often needs a readily citable statement of the form “polynomials
are dense in X (Ω)” for various function spaces X and domain hypotheses on Ω. While the underlying
mechanisms are classical, the corresponding density statements are often recorded only implicitly, or
dispersed across different references and special cases, with domain assumptions left unstated or treated
as folklore. As a result, it is common in practice to cite standard approximation ingredients (extension
theorems, cutoff/localization, approximation by smooth functions, approximate identities, etc.) and
supply ad hoc arguments tailored to the situation at hand.
The purpose of this note is to provide a self-contained account of polynomial density across the main
working function spaces on domains Ω ⊂ Rn, with the domain assumptions stated explicitly. The proofs
synthesize several classical approximation mechanisms into a single reusable template.

1. Extension. Reduce approximation on Ω to approximation on Rn, via extension operators.
2. Compact localization. Cut-off at infinity to reduce to compactly supported functions on Rn.
3. Low-pass filtering. The Heat-kernel is used to produce analytic approximants from compactly sup-

ported inputs.
4. Taylor truncation. Uniform convergence of Taylor series for analytic functions on compacts.

This unification appears not to be documented in this compact form elsewhere. Concretely we prove the
following theorems:
(1) Theorem (Approximation on Unbounded Domains). Let Ω be an open set in Rn. Then polynomials
R[x1, . . . , xn] restricted to Ω are dense in the following spaces:

1. Ck(Ω) with compact-open Ck-topology.
2. C∞(Ω) with compact-open topology.
3. Lp

loc(Ω) for 1 ≤ p < ∞.
4. W k,p

loc (Ω) for k ∈ N0 and 1 ≤ p < ∞.
(2) Theorem (Global Approximation on Bounded Extension Domains). Let Ω be an open, bounded set
on Rn. Let k ∈ N0 and 1 ≤ p < ∞. Then polynomials are dense in:

• C0(Ω̄) with ∥ − ∥sup, (Stone-Weierstrass).
• Lp(Ω) for 1 ≤ p < ∞.
• Ck

b (Ω̄) as Banach-space with Ck-norm, if Ω is a Ck-Extension domain.
• W k,p(Ω) if Ω is a Sobolev Extension domain.

Finally, we include concrete counterexamples illustrating that global approximation in strong norms on
Ω̄ genuinely depends on boundary regularity and/or extension properties, underlining the importance of
the domain hypotheses.

2 Setting

In this section we give definitions for all local function spaces we will consider. Here “local” means that
these spaces do not control the behavior of the functions at the boundary of the domain. Instead function
behavior is constrained on compact subsets K, via a family of seminorms that depend on K and some
extra parameters.
We follow notation from [Hör83], [Lan93], [AF03]. We write K ⋐ Ω to mean that K is compactly
contained in Ω, i.e. K ⊂ Rn is compact and K ⊂ Ω.

2.1 Local Function Spaces

(3) Definition (Ck(Ω) spaces, [Lan93]). For k ∈ N0 and Ω ⊂ Rn open.
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• For k ∈ N0, the space Ck(Ω) consists of functions f : Ω → R with continuous partial derivatives ∂αf

for all |α| ≤ k. We equip Ck(Ω) with the topology generated by the seminorms

ρK,α(f) := sup
x∈K

|∂αf(x)|

where K ⋐ Ω is compactly contained, and α ∈ Nn is a multi-index with |α| ≤ k.
• We denote by Ck

c (Ω) the subspace of compactly supported functions.

(4) Definition (Lp
loc(Ω) Local-Lp-spaces, [Lan93]). Let 1 ≤ p < ∞, and Ω ⊂ Rn a Lebesgue-measurable

subset.

• Let L1
loc(Ω) be the set of equivalence classes of measurable, locally integrable functions f : Ω → R,

where f, f ′ are equivalent if they are equal almost everywhere.
• The space Lp

loc(Ω) ⊂ L1
loc(Ω) is defined as the set of functions with:

λp
K(f) := (

∫
K

|f(x)|p dx)1/p < ∞

for all K ⋐ Ω. We equip Lp
loc(Ω) with the topology generated by the seminorms λp

K .
• Let Lp

c(Ω) be the subspace of Lp
loc(Ω) of functions with compact essential support (ie. f = 0 a.e.

outside of a compact set.)

(5) Definition (W k,p
loc (Ω) Local-Sobolev-spaces, [Web18], Sec.4.2.4). For k ∈ N0 and 1 ≤ p < ∞, and

Ω ⊂ Rn open.

• A function f ∈ L1
loc(Ω) is weakly differentiable in the direction α ∈ Nn

0 if there exists g ∈ L1
loc(Ω) with:∫

Ω
(∂αϕ) f dµ = (−1)|α|

∫
Ω
ϕ g dµ

for all test functions ϕ ∈ C∞
0 (Ω). If a weak derivative exists it is uniquely determined as a class in

L1
loc(Ω), and denoted by ∂vf .

• The local Sobolev space W k,p
loc (Ω) consists of functions f ∈ L1

loc(Ω) whose weak derivatives ∂αf exist
for all |α| ≤ k and satisfy

λp
K,α(f) := λp

K(∂αf) = (
∫

K

|∂αf(x)|p dx)1/p < ∞

for all K ⋐ Ω and multi-indices |α| ≤ k. We equip W k,p
loc (Ω) with the topology generated by the

seminorms λp
K,α.

• Note that Lp
loc(Ω) = W 0,p(Ω) is a special case.

• Let W k,p
c (Ω) ⊂ W k,p

loc (Ω) be the subspace of functions with compact essential support.

We will give several equivalent charaterizations of W k,p
loc in Lemma (10).

(6) Proposition (Zero extension). For Ω ⊂ Rn open, E0 be the zero extension operator:

E0 : L1
loc(Ω) −→ L1

loc(Rn)

with E0(f)(x) = x for x ∈ Ω and E0(f)(x) = 0 otherwise.

• E0 restricts to a continuous linear operator: E0 : W k,p
c (Ω) → W k,p(Rn) for k ∈ N0, 1 ≤ p < ∞.

• E0 restricts to a continuous linear operator: E0 : Ck
c (Ω) → Ck(Rn) for k ∈ N0.

• We have ∂αE0(f) = E0(∂αf) for all f ∈ W k,p
c (Ω) for the weak/distributional and classical/Frechet

derivatives.

Proof. Let u ∈ W k,p
c (Ω) and choose U with ess-supp(u) ⊂ U ⋐ Ω. Then u ∈ W k,p(U) and each

∂αu ∈ Lp(U) for |α| ≤ k. For φ ∈ C∞
c (Rn),
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⟨∂α(E0u), φ⟩ = (−1)|α|
∫

Ω
u ∂αφ = (−1)|α|

∫
U

u ∂αφ =
∫

U

∂αuφ = ⟨E0(∂αu), φ⟩.

Hence ∂α(E0u) = E0(∂αu) in D′(Rn), so E0u ∈ W k,p(Rn) and ∥E0u∥W k,p(Rn) = ∥u∥W k,p(Ω). This gives
continuity of E0 : W k,p

c (Ω) → W k,p(Rn).
If u ∈ Ck

c (Ω), then E0u is Ck on Rn, with ∂α(E0u) = E0(∂αu) pointwise for |α| ≤ k (all derivatives
vanish near ∂Ω because the support is compactly contained). In particular, ∥E0u∥Ck(Rn) = ∥u∥Ck(Ω), so
E0 : Ck

c (Ω) → Ck(Rn) is continuous.

(7) Lemma (Cutoff multiplier). Let Ω ⊂ Rn be open, k ∈ N0, 1 ≤ p < ∞, and χ ∈ C∞(Ω). Then
multiplication by χ defines a continuous map

Mχ : W k,p
loc (Ω) → W k,p

loc (Ω), f 7→ χf.

Proof. Fix K ⋐ Ω. Since χ ∈ C∞(Ω), all derivatives ∂γχ are bounded on K. The Leibniz rule for weak
derivatives ([AF03]) ∂α(χf) =

∑
β≤α

(
α
β

)
(∂α−βχ)(∂βf) in D′(Ω). Taking Lp(K)-norms and using the

bounds on ∂α−βχ gives the required bounds on the semi-norms.

2.2 Global Function Spaces

In this section we introduce all global function spaces we will consider. Here “global” means that the
topology is defined by global estimates on the whole domain of definition.

(8) Definition (Ck
b Banach-spaces, [Lan93]).

• Let Ck
b (Ω) ⊂ Ck(Ω) be the subspace of functions with finite Ck-norm:

∥f∥Ck
b

(Ω) = max
|α|≤k

sup
x∈Ω

|∂αf(x)| < ∞

Then Ck
b (Ω) is Banach space with norm topology.

• Let Ck
b (Ω̄) ⊂ Ck(Ω) be the subspace of functions f where ∂αf admits a continuous, bounded extension

to Ω̄ for all |α| ≤ k.
Then Ck

b (Ω̄) ⊂ Ck
b (Ω) is a closed subspace, and hence complete (Banach).

(9) Definition (W k,p Banach-spaces, [AF03]).

• The (global) Sobolev space W k,p(Ω) ⊂ L1
loc(Ω) is the subspace of k-times weakly differentiable func-

tions with finite Sobolev norm:

∥f∥W k,p(Ω) :=
( ∑

|α|≤k

∥∂αf∥p
Lp(Ω)

)1/p

< ∞

It is a Banach space with norm topology.
• For k = 0 we recover the Lp(Ω) = W 0,p(Ω) space of p-integrable functions.

(10) Lemma (Local W k,p equivalence). Let Ω ⊂ Rn be open, k ∈ N0 and 1 ≤ p < ∞. Then for a
function f ∈ L1

loc(Ω) the following are equivalent:

• f ∈ W k,p
loc (Ω) (i.e. finite λp

K,α semi-norms)
• f |U ∈ W k,p(U) for all U ⋐ Ω relatively compact and open.
• ϕf ∈ W k,p(Ω) for all ϕ ∈ C∞

c (Ω).

Note that for k = 0 we get the corresponding statements for Lp as special case.
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Proof. If u ∈ W k,p(Ω) and ϕ ∈ C∞
c (Ω), then ϕu ∈ W k,p(Ω) and for |α| ≤ k,

∂α(ϕu) =
∑
β≤α

(
α

β

)
(∂βϕ)(∂α−βu)

as distributions in D′(Ω). Multiplication by a smooth function is well-defined in distributions and satisfies
Leibniz’ rule; since ∂βϕ ∈ L∞ and ∂α−βu ∈ Lp, the right-hand side lies in Lp. See [Hör83] or [AF03].
Ad 1 to 2): Fix U ⋐ Ω. By (1), each ∂αf ∈ Lp

loc(Ω), hence ∂αf ∈ Lp(U). For ψ ∈ C∞
c (U) ⊂ C∞

c (Ω),∫
U

f ∂αψ =
∫

Ω
f ∂αψ = (−1)|α|

∫
Ω

(∂αf)ψ = (−1)|α|
∫

U

(∂αf)ψ,

so f |U ∈ W k,p(U).
Ad 2 to 3): Let ϕ ∈ C∞

c (Ω) and choose U ⋐ Ω with Supp(ϕ) ⊂ U . By (2), f |U ∈ W k,p(U), so the cutoff
fact gives ϕf ∈ W k,p(U). Extending ϕf by zero to Ω yields ϕf ∈ W k,p(Ω).
Ad 3 to 1) Fix |α| ≤ k. Choose an open cover (Vi)i∈I of Ω by relatively compact sets Vi ⋐ Ω, and pick
ϕi ∈ C∞

c (Ω) with ϕi ≡ 1 on Vi. Set ui := ϕif ∈ W k,p(Ω) and gi := ∂αui ∈ Lp(Ω). For any ψ ∈ C∞
c (Vi)

we have ui = f on Supp(ψ), hence ∫
Vi

f ∂αψ = (−1)|α|
∫

Vi

gi ψ.

If Vi ∩ Vj ̸= ∅, the same identity with ψ ∈ C∞
c (Vi ∩ Vj) shows gi = gj a.e. on Vi ∩ Vj . Thus we may

glue the gi to a well-defined g ∈ Lp
loc(Ω) by setting g = gi on Vi. The identity above shows g is the weak

α-derivative of f locally, so f ∈ W k,p
loc (Ω).

2.3 Extension Domains

(11) Definition. Let Ω ⊂ Rn be open. Let k ∈ N0, and 1 ≤ p ≤ ∞.

• We say Ω ⊂ Rn is a Ck-extension domain, if there is a bounded extension operator:

E : Ck
b (Ω̄) → Ck

b (Rn)

with E(f)|Ω = f for all f ∈ Ck
b (Ω̄). Sometimes called a Ck Whitney extension domain in the literature

(cf. [See64]).
• We say Ω ⊂ Rn is a W k,p-extension domain, if there exists a bounded extension operator:

E : W k,p(Ω) → W k,p(Rn)

so that E(f)|Ω = f for all f ∈ W k,p(Ω).
• We say Ω is a Sobolev extension domain, if it is a W k,p-extension domain for all choices of k, p.

(12) Example.

• Any bounded open Ω ⊂ Rn is a C0-extension domain by the Urysohn–Brouwer–Tietze Lemma.
• Any open Ω is a Lp = W 0,p-extension domain, as the map:

E0 : Lp(Ω) → Lp(Rn)

sending f to the extension with 0 outside of Ω is well-defined and continuous.
• ([LY24] Thm. 26.) If Ω is a bounded smooth domain with a smooth defining function, then Ω is a
Ck-extension domain.

• ([AF03] Thm. 5.24 / [Ste70]) If Ω has a (strong, local) Lipschitz boundary, then Ω is a Sobolev-

5



extension domain.

3 Approximation Methods

3.1 Tapered Extension

(13) Definition (Tapered Zero Extension E0
ε ).

• Consider the sets:

Ωε = {x ∈ Ω | d(x, ∂Ω) > ε } ⊂ Ω

We have Ωε′ ⊂ Ωε for ε < ε′ and ∪ε>0Ωε = Ω.
• We find boundary cutoff functions χε ∈ C∞(Rn) with values in [0, 1] and χε = 1 on Ωε and χε = 0

outside of Ωε/2 by the smooth Urysohn lemma (since Ωε ⊂ Ωε/2).
• For f : Ω → R we define the ε-tapered zero extension as:

E0
ε (f) = E0(χε · f)

where E0 is the zero-extension operator.

(14) Proposition (Local Approximation). Let Ω ⊂ Rn be open, k ∈ N0, and 1 ≤ p < ∞, then:

1. If f ∈ Ck(Ω) then E0
ε (f) ∈ Ck(Rn) and the resulting map: E0

ε : Ck(Ω) → Ck(Rn) is continuous.
Furthermore, we have:

E0
ε (f)|Ω → f in Ck(Ω)

as ε → 0 in compact-open topology.
2. If f ∈ W k,p

loc (Ω), then E0
ε (f) ∈ W k,p

loc (Rn) and the resulting map: E0
ε : W k,p

loc (Ω) → W k,p
loc (Rn) is

continuous. Furthermore, we have:

E0
ε (f) → f in W k,p

loc (Ω)

as ε → 0.

Proof. Ad 1) Let f ∈ Ck(Ω). Then χεf ∈ Ck(Rn) and vanishes on a neighborhood of ∂Ω, so E0
ε (f) =

E0(χεf) ∈ Ck(Rn) and the map is continuous. If K ⋐ Ω, choose ε0 with K ⊂ Ωε for ε < ε0; then χε = 1
on K and E0

ε (f)|K = f |K , giving E0
ε (f)|Ω → f in the compact-open Ck topology.

Ad 2) Let f ∈ W k,p
loc (Ω). Fix K ⋐ Rn and ε > 0. Since χε is supported in Ωε/2, the set K ∩ Ωε/2 is

compact in Ωε/2; choose η ∈ C∞
c (Ωε/2) with η = 1 on K ∩ Ωε/2. By Lemma (10) (3) and Lemma (7),

u := ηχεf ∈ W k,p(Ω) and has compact essential support in Ω, so Proposition (6) gives E0u ∈ W k,p(Rn).
On K we have E0u = E0

ε (f), hence the seminorms λp
K,α are finite and depend continuously on f , which

proves E0
ε (f) ∈ W k,p

loc (Rn) and continuity. For convergence, fix K ⋐ Ω and choose ε0 with K ⊂ Ωε for
ε < ε0; then χε = 1 on K, so λp

K,α(E0
ε (f) − f) = 0 for all |α| ≤ k, hence E0

ε (f) → f in W k,p
loc (Ω).

3.2 Radial Cutoff

(15) Definition (Radial Cutoff).

• We find radial cutoff functions ψr ∈ C∞(Rn) with ψr(x) = 1 on ∥x∥ < r and ψr(x) = 0 for ∥x∥ > r+1.
• For f : Rn → R we define the radial truncation:

Rr(f) = ψr · f.
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Clearly Supp(Rr(f)) is contained in the compact ball of radius r+1.

(16) Proposition (Approximation on Compacts). Let k ∈ N0 and 1 ≤ p < ∞.

1. If f ∈ Ck(Rn) then Rr(f) ∈ Ck
c (Rn) and the resulting map Rr : Ck(Rn) → Ck

c (Rn) is continuous.
Furthermore Rr(f) → f in Ck(Rn) as r → ∞ in the compact-open topology.

2. If f ∈ W k,p
loc (Rn), then Rr(f) ∈ W k,p

c (Rn) and the resulting map: Rr : W k,p
loc (Rn) −→ W k,p

c (Rn) is
continuous. Furthermore Rr(f) → f in W k,p

loc (Rn) as r → ∞ in the topology.

The proof is similar to Proposition (14).

3.3 Low-Pass Filter via Heat Flow

(17) Definition (Heat kernel and filter Ft).

• For t > 0 define the heat kernel

Ht(x) = (4πt)−n/2 exp(−∥x∥2/4t).

Then Ht ∈ C∞(Rn),
∫
Rn Ht(x) dx = 1, and ∂αHt ∈ L1(Rn) for all multi-indices α.

• If f ∈ Lp(Rn) for some 1 ≤ p ≤ ∞ we define the low-pass filter operator:

Ftf := Ht ∗ f = x 7→
∫
Rn

Ht(x− y)f(y) dy ∈ Lp(Rn).

(18) Proposition (Heat Kernel Approximation). 1. If f ∈ L1(Rn), and t > 0 then Ftf ∈ C∞(Rn) ∩
L1(Rn). The resulting map:

Ft : L1(Rn) −→ C∞(Rn)

is continuous in the compact-open topology for C∞(Rn).
2. If f ∈ L1

c(Rn), then Ftf is real-analytic on Rn and extends to an entire holomorphic function on Cn.
3. (Ck-approximation) For f ∈ Ck(Rn) ∩ L1(Rn), k ∈ N0, we have Ftf → f as t → 0 in Ck(Rn)

(compact-open topology).
4. (W k,p-approximation) For f ∈ W k,p

loc (Rn) ∩L1(Rn), k ∈ N0, 1 ≤ p < ∞ we have Ftf ∈ W k,p
loc (Rn) and

Ftf → f as t → 0 in W k,p
loc (Rn).

In the proof, we will make use of the following Lemma:

(19) Lemma (Off-support decay on compacts). Let K ⋐ Rn and g ∈ L1(Rn). If d(K,Supp g) ≥ δ > 0,
then for every multi-index α,

ρK,α

(
(∂αHt) ∗ g

)
≤ ∥g∥L1 sup

∥z∥≥δ

|∂αHt(z)|.

In particular, for fixed δ > 0 we have sup∥z∥≥δ |∂αHt(z)| → 0 as t ↓ 0, hence ρK,α((∂αHt) ∗ g) → 0.

Proof of Lemma (19). For x ∈ K,

|((∂αHt) ∗ g)(x)| ≤
∫
Rn

|∂αHt(x− y)| |g(y)| dy ≤ ∥g∥L1 sup
y∈Supp g

|∂αHt(x− y)|.

If d(K,Supp g) ≥ δ then ∥x − y∥ ≥ δ, yielding the stated bound. Since ∂αHt is a polynomial times a
Gaussian, it decays uniformly away from 0, so the supremum over ∥z∥ ≥ δ tends to 0 as t ↓ 0.

Proof of Proposition (18). Fix t > 0 and write (Ftf)(x) =
∫
Rn Ht(x− y)f(y) dy.
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Ad 1) For any multi-index α, ∂αHt ∈ L1(Rn) ∩ L∞(Rn), so dominated convergence gives

∂α(Ftf)(x) =
∫
Rn

(∂αHt)(x− y)f(y) dy,

hence Ftf ∈ C∞(Rn). By Young, ∥Ftf∥L1 ≤ ∥Ht∥L1∥f∥L1 = ∥f∥L1 . For continuity in the compact-open
topology, for any K ⋐ Rn and α, ρK,α(Ftf) ≤ ∥∂αHt∥L∞∥f∥L1 , so fm → f in L1 implies ρK,α(Ftfm −
Ftf) → 0.
Ad 2) If Supp f ⊂ K0 is compact, define

H̃t(z) = (4πt)−n/2 exp
(

− 1
4t

n∑
j=1

z2
j

)
, (Ttf)(z) =

∫
Rn

H̃t(z − y)f(y) dy.

For any compact C ⊂ Cn the integrand is bounded on C ×K0, so the integral is absolutely convergent,
and differentiation under the integral shows Ttf ∈ O(Cn). On Rn we have H̃t = Ht, hence Ttf |Rn = Ftf .
Ad 3) Fix K ⋐ Rn and |α| ≤ k. Choose χ ∈ C∞

c (Rn) with χ ≡ 1 near K, and split f = f1 + f2 with
f1 = χf and f2 = (1 − χ)f . Then f1 ∈ Ck

c and d(K,Supp f2) > 0. For f1, the standard approximate-
identity argument (uniform continuity of ∂αf1 and a cutoff split) gives ρK,α(Ftf1 − f1) → 0 as t ↓ 0. For
f2, the Lemma yields ρK,α(Ftf2) = ρK,α((∂αHt) ∗ f2) → 0. Thus ρK,α(Ftf − f) → 0 for all |α| ≤ k.
Ad 4) With the same split, f1 = χf ∈ W k,p(Rn) and the heat kernel is an approximate identity in W k,p

(use translation continuity in Lp and Minkowski), hence λp
K,α(Ftf1 − f1) → 0. On K, f2 = 0, and the

Lemma gives ρK,α((∂αHt) ∗ f2) → 0, so

λp
K,α(Ftf2 − f2) ≤ λp

K(1)ρK,α((∂αHt) ∗ f2) → 0.

Combine to obtain Ftf → f in W k,p
loc (Rn).

3.4 Taylor Truncation

(20) Definition (Taylor truncation Td). Consider a real analytic function f : Rn → R, and a cut-off
degree d ∈ N, and a base-point x0 ∈ Rn. The degree d Taylor truncation is given by:

Td(x0; f) =
∑

|α|≤d

(x− x0)α

α! ∂αf(x0) ∈ R[x1, . . . , xn].

(21) Proposition (Taylor Approximation). Let f ∈ C∞(Rn) be a real-analytic function that extends to
an entire function Cn → C. Then for all x0 ∈ Rn we have:

1. Td(x0; f) → f in Ck(Rn) for d → ∞ (in the compact-open topology).
2. Td(x0, f) → f in W k,p

loc (Rn) for d → ∞.

Proof. Ad 1) Fix k ∈ N0, a compact K ⋐ Rn, and |α| ≤ k. Set g := ∂αf . Since f is entire, so is g. The
Taylor series of an entire function at x0 converges uniformly on compact sets hence:

ρK,α

(
Td(x0; f) − f

)
= sup

x∈K
|Td(x0; g)(x) − g(x)| −−−→

d→∞
0.

Since K and |α| ≤ k were arbitrary, Td(x0; f) → f in Ck(Rn) with the compact-open topology.
Ad 2) Both f ∈ C∞(Rn) and each polynomial Td(x0; f) lie in W k,p

loc (Rn) for all k ∈ N0 and 1 ≤ p < ∞.
Fix K ⋐ Rn and |α| ≤ k. Then

λp
K,α

(
Td(x0; f) − f

)
≤ λp

K(1) ρK,α

(
Td(x0; f) − f

)
−−−→
d→∞

0.

Hence Td(x0; f) → f in W k,p
loc (Rn).
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4 Approximation Theorems

(22) Theorem (Approximation on Unbounded Domains). Let Ω be an open set in Rn. Then polynomials
R[x1, . . . , xn] restricted to Ω are dense in the following spaces:

1. Ck(Ω) with compact-open Ck-topology.
2. C∞(Ω) with compact-open topology.
3. Lp

loc(Ω) for 1 ≤ p < ∞.
4. W k,p

loc (Ω) for k ∈ N0 and 1 ≤ p < ∞.

Proof. In all cases we construct a polynomial approximation as a composition of the Approximation
operators we defined above:

P = Td(x0;Ft(Rr(E0
δ (f)))) ∈ R[x1, . . . , xn]

depending on parameters d ∈ N0, x0 ∈ Rn, t, r, δ > 0. We can choose x0 = 0.
Ad 1) To show that polynomials are dense in Ck(Ω), we have to show that for each function f ∈ Ck(Ω),
and a finite set Ki, αi, we find a polynomial p so that: ρKi,αi

(f − p) < ε. Taking K = ∪iKi and
k = maxi |αi|, it suffices to show:

ρk
K(f − p) := max

|α|≤k
sup
x∈K

|∂αf − ∂αp| < ε

Ad 2) Similarly for C∞(Ω) =
⋂

k>0 C
k(Ω) we need to show that for any f ∈ C∞(Ω), compact K ⊂ Ω

and k ≥ 0 we find a polynomial p with ρk
K(f − p) < ε.

In both cases we argue as follows: As K ⋐ Ω, we find δ > 0 and r > 0 so that f1 = Rr(E0
δ (f)) ∈ Ck

c (Rn)
satisfies f1|K = f |K . By Proposition (18), we find t > 0 so that f2 = Ft(f1) satisfies: ρk

K(f1 − f2) < ε/2.
By Proposition (21), we find d > 0 so that for p = Td(x0; f2) we have ρk

K(p− f2) < ε/2. In total we find:

ρk
K(f − p) ≤ ρk

K(f − f1) + ρk
K(f1 − f2) + ρk

K(f2 − p) < 0 + ε/2 + ε/2 = ε.

Ad 3) This is a special case of 4 for k = 0.
Ad 4) The argument from (1) carries over verbatim replacing ρK,α by λp

K,α.

(23) Theorem (Global Approximation on Bounded Extension Domains). Let Ω be an open, bounded
set on Rn. Let k ∈ N0 and 1 ≤ p < ∞. Then polynomials are dense in:

• C0(Ω̄) with ∥ − ∥sup, (Stone-Weierstrass).
• Lp(Ω) for 1 ≤ p < ∞.
• Ck

b (Ω̄) as Banach-space with Ck-norm, if Ω is a Ck-Extension domain.
• W k,p(Ω) if Ω is a Sobolev Extension domain.

Proof. Ad 1) This is a special case of 3, for k = 0
Ad 2) This is a special case of 4, for k = 0.
Ad 3) Assume Ω is a Ck extension domain and let f ∈ Ck

b (Ω̄). Choose a bounded extension operator
E : Ck

b (Ω̄) → Ck
b (Rn) with E(f)|Ω = f , and set f̃ := E(f). Since Ω is bounded, pick r > 0 with Ω̄ ⊂ Br

and ψr ≡ 1 on Br; set f1 := Rr(f̃) = ψrf̃ ∈ Ck
c (Rn), so f1|Ω̄ = f . Now K = Ω̄ is compact, so we

can apply Proposition (18) to find t > 0 with max|α|≤k supΩ̄ |∂α(Ftf1 − f1)| < ε/2, and set f2 := Ftf1.
Since f1 ∈ L1

c(Rn), Proposition (18) (2) implies f2 is entire. By Proposition (21) choose d so that, for
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p := Td(x0; f2), max|α|≤k supΩ̄ |∂α(p − f2)| < ε/2. Then ∥p − f∥Ck
b

(Ω̄) ≤ max|α|≤k supΩ̄ |∂α(p − f2)| +
max|α|≤k supΩ̄ |∂α(f2 − f1)| < ε. Hence polynomials are dense in Ck

b (Ω̄).
Ad 4) Assume Ω is a Sobolev extension domain and let f ∈ W k,p(Ω). Choose a bounded extension
operator E : W k,p(Ω) → W k,p(Rn) with E(f)|Ω = f , and set f̃ := E(f). Pick r > 0 with Ω ⊂ Br

and ψr ≡ 1 on Br, and set f1 := Rr(f̃) = ψrf̃ . Then f1|Ω = f , and f1 has compact support, hence
f1 ∈ L1(Rn). As K = Ω̄ is compact, we can apply Proposition (18) to find t > 0 with ∥Ftf1−f1∥W k,p(Ω) <

ε/2, and set f2 := Ftf1. Proposition (18) implies f2 is entire. By Proposition (21) choose d so that, for
p := Td(x0; f2), ∥p−f2∥W k,p(Ω) < ε/2. Therefore ∥p−f∥W k,p(Ω) ≤ ∥p−f2∥W k,p(Ω) +∥f2 −f1∥W k,p(Ω) < ε.
Hence polynomials are dense in W k,p(Ω).

5 Counterexamples

Polynomial density holds for bounded, reasonably regular domains and moderate topologies. Outside
this zone one can construct many counterexamples. We record a few concrete ones.

(24) Example (Unbounded domains, uniform norm). Let f(x) = 1
1+x2 on [0,∞). If p is a polynomial

and supx≥0 |f(x) − p(x)| < 1/2, then |p(0) − 1| < 1/2, so p(0) > 1/2. If deg p ≥ 1, then |p(x)| → ∞ along
some ray, so there exists R with |p(x)| > 1 for all x ≥ R, while f(x) ≤ 1/2 there, giving |f(x)−p(x)| > 1/2
for x ≥ R, a contradiction. If deg p = 0, then p ≡ c; the inequalities |1 − c| < 1/2 and |c − 0| < 1/2
cannot hold simultaneously. Thus

inf
p∈R[x]

sup
x≥0

∣∣∣ 1
1 + x2 − p(x)

∣∣∣ ≥ 1
2 ,

and polynomials are not dense in C([0,∞)) with the supremum norm.

(25) Example (Rn, Lp norm). If p is a nonzero polynomial, then p /∈ Lp(Rn) for any 1 ≤ p < ∞. In
particular, polynomials are not dense in Lp(Rn).

(26) Example (Bounded domain, sup-norm). Let Ω = (−1, 0) ∪ (0, 1) and consider the function f(x) =
sign(x). We have f ∈ C0

b (Ω) as it is locally constant and bounded, but it does not extend continuously
to Ω̄ = [0, 1], hence it is not in C0(Ω̄). We have supx∈Ω |p(x) − f(x)| ≥ 1/2 for all polynomials p ∈ R[x],
as p continuously extends through the jump at 0. Thus polynomials are not dense in C0

b (Ω) with the
sup-norm.
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