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Abstract

We prove polynomial density theorems for a broad class of classical function spaces on domains
Q C R", in both local (compact-open) and global (Banach) topologies. In the local regime we show
that restrictions of polynomials are dense in C*(Q2), C*(Q), and L, (Q), W;>?(Q) for arbitrary open
Q.

In the global regime on bounded domains we re-prove the classical density results for C°(Q)
(Stone-Weierstrass) and L?(€2). For higher-differentiable function spaces (k > 1), polynomial density
depends on regularity of the domain. We show density in CF(Q) for C*-extension domains (e.g.
smooth boundary) and in W*P(Q) for Sobolev-extension domains (e.g. Lipschitz boundary).

The proofs are organized around a single approximation pipeline: extension, compact truncation,
analytic regularization, and Taylor approximation. This yields straightforward, standard and unified
arguments that make explicit the domain assumptions underlying several folklore polynomial-density
statements; we also record counterexamples showing that such hypotheses are necessary for global
approximation in strong norms.
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1 Introduction

The modern theory of polynomial approximation begins with Weierstrass’ approximation theorem (1885),
asserting that every continuous function on a closed interval can be uniformly approximated by algebraic
polynomials [Wei85]. Stone’s abstraction, the Stone-Weierstrass theorem, identifies the conceptual mech-
anism behind this phenomenon: on a compact Hausdorff space X, a subalgebra of C'(X) that contains
the constants and separates points is dense in C'(X) [Sto48]. These results explain why, on compact
subsets K C R", polynomials (and trigonometric polynomials) are canonical dense subclasses in C'(K);
see, for example, [Che66] [Tim63].
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Beyond the C° setting, approximation with derivatives becomes subtler. For C*-spaces on manifolds,
Nachbin studied when C*-subalgebras are dense in C*(M) under structural hypotheses [Nac65]. In
Sobolev theory, smooth approximation is a basic tool (the Meyers-Serrin theorem, H = W), and standard
references for the Sobolev scale and its approximation machinery include Adams-Fournier [AF03].

In day-to-day analysis and PDEs one often needs a readily citable statement of the form “polynomials
are dense in X (2)” for various function spaces X and domain hypotheses on Q. While the underlying
mechanisms are classical, the corresponding density statements are often recorded only implicitly, or
dispersed across different references and special cases, with domain assumptions left unstated or treated
as folklore. As a result, it is common in practice to cite standard approximation ingredients (extension
theorems, cutoff/localization, approximation by smooth functions, approximate identities, etc.) and
supply ad hoc arguments tailored to the situation at hand.

The purpose of this note is to provide a self-contained account of polynomial density across the main
working function spaces on domains 2 C R", with the domain assumptions stated explicitly. The proofs
synthesize several classical approximation mechanisms into a single reusable template.

1. Extension. Reduce approximation on {2 to approximation on R", via extension operators.

2. Compact localization. Cut-off at infinity to reduce to compactly supported functions on R™.

3. Low-pass filtering. The Heat-kernel is used to produce analytic approximants from compactly sup-
ported inputs.

4. Taylor truncation. Uniform convergence of Taylor series for analytic functions on compacts.

This unification appears not to be documented in this compact form elsewhere. Concretely we prove the
following theorems:

(1) Theorem (Approximation on Unbounded Domains). Let Q be an open set in R™. Then polynomials
R[z!, ..., 2" restricted to 2 are dense in the following spaces:

1. C*(Q) with compact-open C*-topology.
2. C*(Q) with compact-open topology.
3. L} (Q) for 1 <p < co.

4. WEP(Q) for k € Ny and 1 < p < 0.

loc

(2) Theorem (Global Approximation on Bounded Extension Domains). Let 2 be an open, bounded set
on R™. Let k € Ny and 1 < p < oo. Then polynomials are dense in:

o C%Q) with || — ||sup, (Stone-Weierstrass).

o LP(Q) for 1 <p< 0.

o C’l’f(i) as Banach-space with C*-norm, if Q is a C*-Extension domain.
o WEP(Q) if Q is a Sobolev Extension domain.

Finally, we include concrete counterexamples illustrating that global approximation in strong norms on
Q genuinely depends on boundary regularity and/or extension properties, underlining the importance of
the domain hypotheses.

2 Setting

In this section we give definitions for all local function spaces we will consider. Here “local” means that
these spaces do not control the behavior of the functions at the boundary of the domain. Instead function
behavior is constrained on compact subsets K, via a family of seminorms that depend on K and some
extra parameters.

We follow notation from [Ho6r83], [Lan93], [AF03]. We write K € 2 to mean that K is compactly
contained in 2, i.e. K C R™ is compact and K C €.

2.1 Local Function Spaces

efinition Spaces an . or € Ng an C open.
(3) Definition (C*(Q) spaces, [Lan93]). For k € Ny and Q € R™ op



o For k € Ny, the space C*(2) consists of functions f :  — R with continuous partial derivatives 9 f
for all |a| < k. We equip C*¥(Q) with the topology generated by the seminorms

pK.a(f) = sup 0% f(z)]

zeK

where K € ) is compactly contained, and a € N™ is a multi-index with || < k.

« We denote by C*(9) the subspace of compactly supported functions.

(4) Definition (L} () Local-LP-spaces, [Lan93]). Let 1 < p < oo, and 2 C R™ a Lebesgue-measurable
subset.

o Let Li,.(Q) be the set of equivalence classes of measurable, locally integrable functions f : Q@ — R,

where f, f/ are equivalent if they are equal almost everywhere.
o The space LF () C L} () is defined as the set of functions with:

loc loc

Xeo(f) = ( /K @) da) P < oo

for all K € Q. We equip L () with the topology generated by the seminorms A}..

loc
o Let L2(Q) be the subspace of LT (Q) of functions with compact essential support (ie. f = 0 a.e.
outside of a compact set.)

(5) Definition (Wl]f)cp(Q) Local-Sobolev-spaces, [Webl18], Sec.4.2.4). For k € Ny and 1 < p < oo, and
Q C R" open.

o A function f € L, (9) is weakly differentiable in the direction o € NJ if there exists g € L}, () with:

loc

o (1l
/Q(8 ¢) fdu=(-1) /Q¢gdu

for all test functions ¢ € C§°(€2). If a weak derivative exists it is uniquely determined as a class in
L}, (), and denoted by 9, f.

loc
o The local Sobolev space WZIZCP(Q) consists of functions f € L}, () whose weak derivatives 9 f exist
for all || < k and satisfy

Noe o (f) = No (07 ) = ( /K 10° F(@) P )7 < oo

for all K € Q and multi-indices |o| < k. We equip W/;cp(Q) with the topology generated by the

seminorms Ay, .
o Note that L7 () = WO%P(Q) is a special case.

loc

o Let WEP(Q) € W/FP(Q) be the subspace of functions with compact essential support.

loc

We will give several equivalent charaterizations of W/Z’Cp in Lemma (10).

(6) Proposition (Zero extension). For @ C R™ open, Ey be the zero extension operator:
Ey : Llloc(Q) - Llloc(Rn)
with Eo(f)(z) =z for x € Q and Eo(f)(z) = 0 otherwise.

e Ey restricts to a continuous linear operator: Eq : WEP(Q) — WFP(R™) for k € Ny, 1 < p < 00.

 FEy restricts to a continuous linear operator: Eg : C¥(Q) — C*(R™) for k € Ny.

o We have O“Ey(f) = Eo(0“f) for all f € WFEP(Q) for the weak/distributional and classical/Frechet
derivatives.

Proof. Let u € WFP(Q) and choose U with ess-supp(u) C U € Q. Then u € WKP(U) and each
0%u € LP(U) for |a| < k. For ¢ € CX(R"),



(0% (Equ), ) = (—1)1 /

Q

wdp = (-1)'04/

ud%p :/ O%up = (Eo(0%u), ¢).
U U

Hence 0%(Egu) = E(0“u) in D'(R™), so Equ € W*P(R™) and || Egullyr.s®ny = ||[ullwr.p(o). This gives
continuity of Ey : WEP(Q) — WHEP(R™).

If u € C¥(Q), then Fyu is C*¥ on R", with 0%(Equ) = Fo(0“u) pointwise for |a| < k (all derivatives
vanish near J€2 because the support is compactly contained). In particular, ||Eoullcr@ny = [[ullor @), s0
Ey : C*(Q) — C*(R™) is continuous.

O

(7) Lemma (Cutoff multiplier). Let Q C R™ be open, k € Np, 1 < p < o0, and x € C®(Q). Then
multiplication by x defines a continuous map

M, : WEP(Q) — WEP(Q), fexf

loc loc

Proof. Fix K € Q. Since x € C*(Q), all derivatives 97x are bounded on K. The Leibniz rule for weak
derivatives ([AF03]) 0%(xf) = > p<a (g) (0°=Px) (0% f) in D'(Q). Taking LP(K)-norms and using the
bounds on 9*~#y gives the required bounds on the semi-norms.

O

2.2 Global Function Spaces

In this section we introduce all global function spaces we will consider. Here “global” means that the
topology is defined by global estimates on the whole domain of definition.

(8) Definition (C} Banach-spaces, [Lan93]).

o Let CF(Q2) C C*¥(2) be the subspace of functions with finite C*-norm:

ko) = max sup |0%f(z)]| < oo
I/l = max sup (0" (@)

Then CF(9) is Banach space with norm topology.

. LetﬁC’ﬁ(Q) C C*(9) be the subspace of functions f where 9 f admits a continuous, bounded extension
to Q for all |a] < k.
Then CF(Q) C CF(RQ) is a closed subspace, and hence complete (Banach).

(9) Definition (W*? Banach-spaces, [AF03]).

o The (global) Sobolev space WkP(Q) C L, () is the subspace of k-times weakly differentiable func-
tions with finite Sobolev norm:

1/p
I llwes = (30 10°FIq)) <o

le| <k
It is a Banach space with norm topology.

o For k = 0 we recover the LP(Q) = W%P(Q) space of p-integrable functions.

(10) Lemma (Local W*? equivalence). Let  C R" be open, k € Ny and 1 < p < oo. Then for a
function f € L} (Q) the following are equivalent:

loc

o FEWSEP(Q) (ie. finite Nk o S€Mi-norms)

o flu € WEP(U) for all U € Q) relatively compact and open.
o &f € WEP(Q) for all ¢ € C(Q).

Note that for k = 0 we get the corresponding statements for LP as special case.



Proof. If u € WFP(Q) and ¢ € C°(Q2), then ¢u € WkP(Q) and for |a| < k,

o) = 3 (§) @00 )

hza VP
as distributions in D’(€2). Multiplication by a smooth function is well-defined in distributions and satisfies
Leibniz’ rule; since 9°¢ € L> and 9% Pu € LP, the right-hand side lies in LP. See [H6r83] or [AF03].
Ad 1to 2): Fix U € Q. By (1), each 0*f € L? (), hence 9*f € LP(U). For ¢ € C°(U) C CX(Q),

loc

[rore= [ goru= e [y = v [ .

so fly € WkP(U).

Ad 2 to 3): Let ¢ € C°(Q) and choose U € 2 with Supp(¢) C U. By (2), flv € W*P(U), so the cutoff
fact gives ¢f € W*P(U). Extending ¢f by zero to Q yields ¢f € WFP(Q).

Ad 3 to 1) Fix |a| < k. Choose an open cover (V;);cr of Q by relatively compact sets V; € 0, and pick
¢i € C(2) with ¢; =1 on V. Set u; := ¢;f € WFP(Q) and g; := 9%u; € LP(Q). For any ¢ € C(V;)

we have u; = f on Supp(¢), hence
8a = —1 |oz\ V.
[ sorv=c0e [ g

If V; NV} # @, the same identity with ¢ € C2°(V; N'V;) shows g; = g; a.e. on V; NV;. Thus we may
glue the g; to a well-defined g € L? () by setting g = g; on V;. The identity above shows g is the weak

loc

a-derivative of f locally, so f € WZIZCP(Q)
O

2.3 Extension Domains

(11) Definition. Let Q C R™ be open. Let k € Ny, and 1 < p < 0.
o We say Q C R™ is a C*-extension domain, if there is a bounded extension operator:
E: CF(Q) — CFR™)

with E(f)|q = f for all f € CF(Q). Sometimes called a C* Whitney extension domain in the literature
(cf. [See64]).

o We say Q C R” is a W¥P-extension domain, if there exists a bounded extension operator:
E:WkP(Q) — WrEP(R")
so that E(f)|q = f for all f € WFP(Q).
o We say Q is a Sobolev extension domain, if it is a WW*P-extension domain for all choices of k, p.
(12) Example.

o Any bounded open 2 C R" is a C%-extension domain by the Urysohn-Brouwer-Tietze Lemma.

o Any open Q is a LP = W%P-extension domain, as the map:
Ey: LP(Q) — LP(R™)

sending f to the extension with 0 outside of €2 is well-defined and continuous.

([LY24] Thm. 26.) If Q is a bounded smooth domain with a smooth defining function, then  is a
C*-extension domain.

([AF03] Thm. 5.24 / [Ste70]) If © has a (strong, local) Lipschitz boundary, then € is a Sobolev-



extension domain.

3 Approximation Methods

3.1 Tapered Extension

(13) Definition (Tapered Zero Extension E?).

« Consider the sets:

Q. ={ze€Q|dz,00)>c} C
We have Q. C Q. for e < &’ and U.~oQ: = Q.

e We find boundary cutoff functions x. € C*°(R"™) with values in [0,1] and x. = 1 on . and x. =0
outside of Q. /o by the smooth Urysohn lemma (since Q. C Q. /2).

e For f:Q — R we define the e-tapered zero extension as:

Eg(f) = EO(XE ) f)
where Ej is the zero-extension operator.
(14) Proposition (Local Approximation). Let Q C R™ be open, k € Ny, and 1 < p < oo, then:

1. If f € C*(Q) then E%(f) € C*(R™) and the resulting map: E° : C*(Q) — CK(R") is continuous.
Furthermore, we have:
EX(flle = f in CHQ)
as € — 0 in compact-open topology.
2. If f € WEP(Q), then EO(f) € WEP(R™) and the resulting map: E° : WEP(Q) — WEP(R™) is
continuous. Furthermore, we have:

EYf) = f in WEP(Q)

loc

as e — 0.

Proof. Ad 1) Let f € C*(Q). Then x.f € C*(R™) and vanishes on a neighborhood of 92, so E2(f) =
Eo(x.f) € C*(R™) and the map is continuous. If K € €, choose ey with K C Q. for € < g¢; then y. = 1
on K and E%(f)|x = f|x, giving E2(f)|q — f in the compact-open C* topology.

Ad 2) Let f € Wk’p(Q). Fix K € R" and € > 0. Since x. is supported in ). 9, the set K N,y is

loc
compact in €, /o; choose n € C(Q,/2) with n = 1 on K N, /;. By Lemma (10) (3) and Lemma (7),
u = nx.f € W*P(Q) and has compact essential support in €2, so Proposition (6) gives Equ € WP (R").
On K we have Egu = E2(f), hence the seminorms Nk o are finite and depend continuously on f, which

proves E2(f) € wlp (R™) and continuity. For convergence, fix K € Q and choose gy with K C . for

loc

€ < €05 then x. = 1 on K, so N (E2(f) — f) = 0 for all |a] <k, hence EX(f) — f in WEP(Q).
O

3.2 Radial Cutoff

(15) Definition (Radial Cutof).

o We find radial cutoff functions ¢, € C°°(R™) with ¢, () = 1 on ||z|| < r and ¢, (z) = 0 for ||z|| > r+1.
e For f:R"™ — R we define the radial truncation:

Rr(f):wr'f-



Clearly Supp(R,(f)) is contained in the compact ball of radius r+1.
(16) Proposition (Approximation on Compacts). Let k € Ny and 1 < p < co.

1. If f € C*(R™) then R,(f) € CE(R") and the resulting map R, : CF*(R™) — C¥(R™) is continuous.
Furthermore R,.(f) — f in CF(R™) as r — oo in the compact-open topology.

2. If f € WEP(R™), then R,(f) € WFP(R™) and the resulting map: R, : WP(R") —s WFP(R") is
continuous. Furthermore R.(f) — f in Wk’p(R") as r — oo in the topology.

loc

The proof is similar to Proposition (14).

3.3 Low-Pass Filter via Heat Flow

(17) Definition (Heat kernel and filter F}).

e For ¢t > 0 define the heat kernel
Hy(z) = (4t) "2 exp(—||z||?/4t).

Then H; € C*°(R™), [g. Hi(z)dz =1, and §*H, € L*(R™) for all multi-indices c.
o If f € LP(R™) for some 1 < p < oo we define the low-pass filter operator:

Fif =H xf=x+ Hy(x —y)f(y)dy € LP(R™).
R’ﬂ

(18) Proposition (Heat Kernel Approximation). 1. If f € LY(R"), and t > 0 then Fyf € C®(R") N
LY(R™). The resulting map:
Fy: L*(R") — C*°(R")
is continuous in the compact-open topology for C>°(R™).
2. If f € LL(R™), then F.f is real-analytic on R™ and extends to an entire holomorphic function on C™.

3. (Ck-approzimation) For f € C*R™) N LY(R"), k € Ny, we have Fyf — f ast — 0 in C*(R")
(compact-open topology).

4. (W¥*P_approzimation) For f € VV{Z;’(R") NLY(R"), k € Ny, 1 < p < 0o we have Fy.f € VV{;;’(R") and
Fif - fast—0in V[/llf)’p(R").

C

In the proof, we will make use of the following Lemma:

(19) Lemma (Off-support decay on compacts). Let K € R" and g € L*(R"). If d(K,Suppg) > 6 > 0,
then for every multi-indez o,

P ((0°Hy) % g) < [|gll s HSIHIEJWQHt(Z)L

In particular, for fized 6 > 0 we have sup|, > |0“Hi(2)| — 0 as t ] 0, hence pr o ((0%Ht) * g) — 0.

Proof of Lemma (19). For xz € K,
[(0%Hy) * g) ()| < / 0“Hy(z —y)| |lg(y)dy < [lgllr sup [0%Hi(z —y).
R yESupp g

If d(K,Suppg) > ¢ then || — y|| > 0, yielding the stated bound. Since 0*H; is a polynomial times a
Gaussian, it decays uniformly away from 0, so the supremum over ||z|| > ¢ tends to 0 as ¢ | 0.

O

Proof of Proposition (18). Fix t > 0 and write (Fy.f)(z) = [o. Hi(z —y)f(y) dy.



Ad 1) For any multi-index a, 0*H; € L*(R™) N L*°(R"), so dominated convergence gives

0 (Fif)e) = [ (@ HO@~ )W) d,

hence Fif € C*°(R"™). By Young, ||Fifllrr < ||Hello2llfllz: = || f]|z:. For continuity in the compact-open
topology, for any K € R" and «, px.o(Frf) < [|0“He| < |fllLt, 80 fm — f in L' implies pr o (Fyfm —
Fi.f) — 0.

Ad 2) If Supp f C K is compact, define

Ai(z) = (rt) " exp(~ 230 2), (Tf)(e) = [ Bz - S ) dy.
=1

J

For any compact €' C C" the integrand is bounded on C' x Ky, so the integral is absolutely convergent,
and differentiation under the integral shows Ty f € O(C™). On R™ we have H; = Hy, hence T} f|gn = Fif.

Ad 3) Fix K € R" and |a| < k. Choose x € C(R"™) with x = 1 near K, and split f = f; + fo with
fi=xfand fo = (1 —x)f. Then f; € C* and d(K,Supp f2) > 0. For f;, the standard approximate-
identity argument (uniform continuity of 0% f; and a cutoff split) gives px o (Fif1 — f1) — 0 ast | 0. For
fa2, the Lemma yields px o(Fif2) = pr,o ((0%Ht) * f2) — 0. Thus pg o (Fif — f) — 0 for all |a| < k.

Ad 4) With the same split, f; = xf € W*P(R") and the heat kernel is an approximate identity in W*-»
(use translation continuity in L” and Minkowski), hence N (Fif1 — f1) — 0. On K, fy = 0, and the
Lemma gives pg o ((0“Hy) * f2) — 0, so

N o (Fefa = f2) < Ne(D)pr,a((0“Hy) * f2) — 0.

Combine to obtain Fyf — f in WP (R™).

loc

3.4 Taylor Truncation

(20) Definition (Taylor truncation T,). Consider a real analytic function f : R" — R, and a cut-off
degree d € N, and a base-point xy € R™. The degree d Taylor truncation is given by:

Two:f) = 3 EI g0 pag) e Rl o)

|| <d

(21) Proposition (Taylor Approximation). Let f € C®°(R™) be a real-analytic function that extends to
an entire function C* — C. Then for all zo € R™ we have:

1. Ty(zo; f) — f in C¥(R™) for d — oo (in the compact-open topology).
2. Ty(zo, f) — f in WEP(R™) for d — oo.

loc

Proof. Ad 1) Fix k € Ny, a compact K € R", and |a] < k. Set g := 9*f. Since f is entire, so is g. The
Taylor series of an entire function at xg converges uniformly on compact sets hence:

pic.a(Ta(o; f) = f) = sup [Ta(wo: 9)(x) = g(x)| == 0.

Since K and |a| < k were arbitrary, Ty(zo; f) — f in C*(R™) with the compact-open topology.

Ad 2) Both f € C°°(R"™) and each polynomial Ty(zo; f) lie in VV;Z’CP(R”) forall k € Ngand 1 < p < co.
Fix K € R"” and |a| < k. Then

Nie o (Ta(zo; f) = [) < N (1) prea(Ta(zo; f) = ) —— 0.

d—o0

Hence Ty(xzo; f) — f in WP (R™).

loc



4 Approximation Theorems

(22) Theorem (Approximation on Unbounded Domains). Let Q be an open set in R™. Then polynomials
R[z!, ..., 2" restricted to 2 are dense in the following spaces:

1. C*(Q) with compact-open C*-topology.
2. C*(Q) with compact-open topology.

3. L7 () for 1 <p < oco.

4. WEP(Q) for k€ Ny and 1 < p < co.

Proof. In all cases we construct a polynomial approximation as a composition of the Approximation
operators we defined above:

P = Ty(zo; Fy(R-(ES(f)))) € R[z', ..., 2"]

depending on parameters d € Ny, g € R™, t,7,6 > 0. We can choose xg = 0.

Ad 1) To show that polynomials are dense in C*(£2), we have to show that for each function f € C*(Q),
and a finite set K;, oy, we find a polynomial p so that: pg, «,(f —p) < e. Taking K = U;K; and
k = max; |a;], it suffices to show:

W(f—p) = max sup |0%f — 9%| <e
la|<k zeK

Ad 2) Similarly for C*°(Q) = (o C*(€2) we need to show that for any f € C>°(), compact K C
and k > 0 we find a polynomial p with p% (f —p) < e.

In both cases we argue as follows: As K € (2, we find § > 0 and 7 > 0 so that f; = R,.(EY(f)) € CE(R™)
satisfies f1|x = f|x. By Proposition (18), we find t > 0 so that fo = Fy(f1) satisfies: pk (f1 — fa) < £/2.
By Proposition (21), we find d > 0 so that for p = Ty(zo; f2) we have ph-(p — f2) < £/2. In total we find:

Pic(f=p) < pic(f = f1) + Pk (fr — fo) + Plic(f2—p) <O+e/2+e/2=e.

Ad 3) This is a special case of 4 for k = 0.
Ad 4) The argument from (1) carries over verbatim replacing pr . by )‘Il)(,a

O

(23) Theorem (Global Approximation on Bounded Extension Domains). Let Q be an open, bounded
set on R™. Let k € Ng and 1 < p < 0o. Then polynomials are dense in:

o LP(Q) for 1 <p < cc.
( as Banach-space with C*-norm, if Q is a C*-Extension domain.

o C%Q) with || = ||lsup, (Stone-Weierstrass).
. CHO)
o WkP(Q) if Q is a Sobolev Extension domain.

Proof. Ad 1) This is a special case of 3, for k=0
Ad 2) This is a special case of 4, for k = 0.

Ad 3) Assume Q is a C* extension domain and let f € CF(Q). Choose a bounded extension operator
E: CF(Q) — CFR™) with E(f)|q = f, and set f := E(f). Since Q is bounded, pick r > 0 with Q C B,
and ¥, = 1 on B,; set f1 == R.(f) = ¥.f € C*(R"), so filg = f. Now K = Q is compact, so we
can apply Proposition (18) to find ¢ > 0 with max|q|<j supg [0%(Fi f1 — f1)| < €/2, and set fo := Ffi.
Since f; € LL(R™), Proposition (18) (2) implies f, is entire. By Proposition (21) choose d so that, for



p = Ty(wo; f2), max|q|<p supg [0%(p — f2)| < €/2. Then [|p — ch{;(Q) < max|q <k Supg |0%(p — f2)| +
max|q|<j Supg |0*(f2 — f1)| < e. Hence polynomials are dense in CF(€2).

Ad 4) Assume Q is a Sobolev extension domain and let f € W*P(Q2). Choose a bounded extension
operator E : WhP(Q) — WFP(R") with E(f)|q = f, and set f := E(f). Pick r > 0 with Q C B,
and ¢, = 1 on B,, and set f; := R,(f) = ¢,f. Then fi|lo = f, and f; has compact support, hence
f1 € LY(R"). As K = Q is compact, we can apply Proposition (18) to find ¢t > 0 with IFefi—fillwer o) <
€/2, and set fy := Fifi. Proposition (18) implies f, is entire. By Proposition (21) choose d so that, for
p = Ta(zo; f2), [p— fallwre(o) < /2. Therefore |p— fllwrr ) < [P fallwer) +Ifo—fillwer@) <e.
Hence polynomials are dense in WP ().

O

5 Counterexamples

Polynomial density holds for bounded, reasonably regular domains and moderate topologies. Outside
this zone one can construct many counterexamples. We record a few concrete ones.

(24) Example (Unbounded domains, uniform norm). Let f(x) = H% on [0,00). If p is a polynomial
and sup,~q | f(z) —p(z)|] < 1/2, then [p(0) —1| < 1/2, so p(0) > 1/2. If degp > 1, then |p(x)| — oo along
some ray, so there exists R with |p(z)| > 1 for all z > R, while f(z) < 1/2 there, giving | f(x)—p(z)| > 1/2
for x > R, a contradiction. If degp = 0, then p = ¢; the inequalities |1 — ¢| < 1/2 and |¢c — 0] < 1/2
cannot hold simultaneously. Thus

inf sup —p(x)| >

pER[z] >0l 1 + 22

)

DO | =

and polynomials are not dense in C(]0, 00)) with the supremum norm.

(25) Example (R™, L? norm). If p is a nonzero polynomial, then p ¢ LP(R™) for any 1 < p < co. In
particular, polynomials are not dense in LP(R™).

(26) Example (Bounded domain, sup-norm). Let & = (—1,0) U (0,1) and consider the function f(z) =
sign(z). We have f € C(Q) as it is locally constant and bounded, but it does not extend continuously
to = [0, 1], hence it is not in C°(Q2). We have sup,cq, [p(z) — f(x)| > 1/2 for all polynomials p € R[z],
as p continuously extends through the jump at 0. Thus polynomials are not dense in C’bo (Q) with the
sup-norm.
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