Faa di Bruno is Taylor Composition

A principled approach to the multi-variate Faa di Bruno formula in various incarnations

Heinrich Hartmann*

doi:10.5281 /zenodo.18203201

Abstract

We give an elementary, self-contained proof of the multi-variate Faa di Bruno formula as a com-
position theorem for Taylor Polynomials in the setting of real normed vector spaces: if ¢ : F — F
and 9 : F — G are k-fold Fréchet differentiable at the points € E, y = ¢(z) € F then the Taylor
Polynomials compose in the natural way:

Ty (o ¢) = m<i(Ty () 0 T (9)).

From this composition principle we derive (i) the partition formula for higher Fréchet derivatives
and (ii) the multi-index coefficient formula established by Constantine-Savits.

While many recent papers frame Faa di Bruno via Bell polynomials, trees, Hopf algebras, jets, or
coordinate combinatorics, our approach isolates the analytic core—functoriality of pointwise Taylor
approximation—under minimal assumptions. We avoid making finite-dimensionality or completeness
assumptions and work with a weak notion of pointwise Fréchet differentiability. The familiar com-
binatorial coefficients arise mechanically from two standard operations: polarization and coefficient
extraction from composed Taylor polynomials. The result is a short, self-contained account that
covers all relevant versions of the Formula in a very general setting.

As an application we present a general higher-order Leibniz rule in both partition and multi-index
form.
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Faa di Bruno—type formulas describe how higher derivatives behave under composition. In the classical
one-variable setting, they express (f o g)(”) as a polynomial in the derivatives of f and g with explicitly
computable combinatorial coefficients (often packaged by Bell polynomials). In 1855 Faa di Bruno derived
the identity (for f,g: R — R)
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Here the sum (*) runs over all tuples my, ..., m, € Ny constrained by the conditions m; +---+m,, =k
and mq + 2mso + - -+ + nm,, = n.

This formula admits several equivalent repackagings in terms of Bell polynomials, partition sums, umbral
expressions — each highlighting different facets of the combinatorial structure.

In several variables the underlying pattern remains the same, but the bookkeeping becomes substantially
heavier: one must track multi-index exponents, manage products over vector-valued derivatives, and
account for the richer symmetry of set partitions with block multiplicities. A complete explicit multi-
variate formula with fully worked-out combinatorial coefficients was only established by Constantine and
Savits in 1996 - 141 years after Faa di Bruno’s original work.

This note takes a deliberately “analytic-first” viewpoint. We work with maps between real normed vector
spaces and isolate the following question as the core of Faa di Bruno:

If ¢ is approximated near o by a polynomial kaoqb of degree < k, and 1 is approximated near
Yo = ¢(x0) by a polynomial Tfow of degree < k, what polynomial approximates ¢ o ¢ near
.’L’()?

There is one natural candidate: the polynomial composition T} ¢ o Tk ¢, truncated to degree < k.
Our first main result confirms that this is correct under minimal hypotheses: pointwise k-fold Fréchet
differentiability at a single point (no global smoothness assumptions, and no completeness or finite-
dimensionality requirements). Concretely, we show that if ¢ and ¢ admit pointwise Taylor decompositions
of order k at xg and yg respectively, then 1 o ¢ does as well, with

Ty (Yo ¢) =mep(Tpho Ty ).

Once this “composition of Taylor polynomials” principle is established, the familiar combinatorial formu-
las fall out systematically:

o the partition form is obtained by polarization (passing from homogeneous polynomials to symmetric
multilinear maps), yielding a formula for D¥ (1 0 ¢)(0) as a sum over set partitions of [k];

¢ the multi-index form is obtained by coefficient extraction in coordinates: expand the Taylor poly-
nomials in a monomial basis and compute the coefficient of 2 in T, 1 (T% ¢(x)). This produces an
explicit coefficient identity that recovers the multi-index Faa di Bruno formula (in particular the struc-
ture underlying the Constantine—Savits coefficients) as a corollary of a purely algebraic multinomial
bookkeeping lemma.

As an application we include a higher-order Leibniz rule in two parallel forms: a partition identity for
Fréchet derivatives and a multi-index identity for partial derivatives. The proof is deliberately routed
through the Faa di Bruno formula in both incarnations.

2 Related Work

There is a large literature around Faa di Bruno formulas and their multivariate generalizations; we briefly
summarize the most relevant references and how they compare to the present treatment.

More directly related to this paper:

e Faa di Bruno (1855, F. Faa di Bruno. “Sullo sviluppo delle funzioni”) [dB55] [dB57]. The original
one-dimensional formulas introducing the identity that now bears his name, in Italian (1855) and
French (1857). These short notes are the primary historical sources.

e Scott (1861, “Formulae of Successive Differentiation”) [Sco61] [Joh02]. In the one-variable case go f :
R — R, Scott’s identity (as recounted by Johnson) gives a 1D Taylor-composition viewpoint via
coefficient extraction: apply Taylor’s theorem to g in the increment f(¢ + h) — f(t) and read off the
coefficient of A™.

o Constantine-Savits (1996, “A Multivariate Faa di Bruno Formula with Applications”) [CS96]. Foun-
dational multivariate Faa di Bruno formula for arbitrary partial derivatives of a composition h(x) =



f(g(x)) with f : R™ — R and g : R — R™, expressed in full multiindex form using set partitions and
multivariate Stirling numbers. Their proof is combinatorial and coordinate-based. The multiindex
form stated here recovers their coefficient formula but is derived from a short argument based on jets
and polarized Fréchet derivatives.

Herndndez Encinas-Munoz Masqué (2003, “A short proof of the generalized Faa di Bruno’s formula”)
[EMO03]. Derive the multivariate Fad di Bruno formula by working at the level of r-jets (higher
cotangent spaces) and using induced algebra morphisms on truncated local rings; in coordinates this
amounts to composing truncated multivariate power series and applying the multinomial theorem.
This is close in spirit to our “Taylor polynomials compose” viewpoint, but their formulation stays in
the finite-dimensional multi-index setting and is phrased in the language of higher cotangent spaces
rather than as an explicit functoriality statement for pointwise Taylor polynomials between general
normed spaces.

Levy (2006, “Why do partitions occur in Faa di Bruno’s chain rule for higher derivatives?”) [Lev06].
Gives what is, to our knowledge, the only explicit partition-form Faa di Bruno formula for n-th
Fréchet derivatives between Banach spaces, and explains why partitions appear. The first part uses
an algebraic description in terms of coalgebras on germs; the second part proves the Banach-space
partition formula via iterated finite differences on parallelepipeds. The partition form proved in this
paper agrees with Levy’s formula but is obtained from a very short jet-based computation.

Duarte—Torres (2008, “A discrete Faa di Bruno’s formula”) [DT08]. Develop a discrete (finite-difference)
Faa di Bruno formula for maps between linear spaces, valid for general functions of several variables,
by building an algebra of symbolic finite-difference expressions and expanding A%(f o g) in terms of
finite differences of f and g. Their analysis also yields a streamlined proof of the smooth Faa di Bruno
formula when one passes from finite differences to derivatives; philosophically this is close to viewing
higher derivatives as jets, but their primary emphasis is on the discrete setting.

3 Polynomials

We present a brief overview of the basic theory of Polynomials in an infinite dimensional setting of normed
vector spaces following [Din99]. The reader who is only interested in the finite dimensional setting can
safely skip this section.

(1) Definition (Polynomials [Din99]). Let E, F be real normed vector spaces.

Write L(E, F) for the vector space of bounded linear maps A : E — F, with operator norm:

[All="sup [[A(v)]]
veB,[lv]<1

For k > 0let L(*E, F) be the space of bounded k-fold multi-linear maps Ay : E*¥ — F with operator
norm:
[Akll = sup [[Ag(v1,... o)l

V1,..., 0, EE

llvill <1
Let £L5(*E,F) c L(*E, F) be the subspace of symmetric multi-linear maps.
A map p: E — F is called a k-homogeneous polynomial if there exists A € £5(*E, F) such that

1 1
p(l‘):HA[:E,...,:E]:HA[x(gk], x € k.

We write P*(E, F) C Map(E, F) for the space of such maps.

A polynomial map p: E — F'is a finite sum of homogeneous polynomials:

p= Zpk with pj € PH(E, F).
k=0



We write P(E,F) = > ;5 PH(E,F) C Map(E,F) for the space of all polynomial maps, and
P<n(E,F) =Y} _,P¥(E, F) subspace of polynomial maps of degree < n.
o For F =R we write P(E) := P(E,R).

(2) Lemma (Polarization). Let p : E — F be a polynomial map, represented as a sum of multi-linear
Jorms p(x) = Y1 _o Pk, Pk = 17 Ak[z®*] with Ay, € L5(FE, F).

o The top-degree multi-linear form A, € L5("E, F) can be recovered from p : E — F wvia:

Aplvr, ..., 0] = Z (—1)"7|I|p(z v;)
IC[n] el
forv, € E.
e For a polynomial map p: E — F, p # 0 the representation

pl) = 3 A
k=0 "

in terms of n € Ny, Ay € L3(*E, F) is unique.

Proof. The polarization formula is Mdbius inversion on the Boolean lattice 2(*: By multilinearity,

PO v)=> > %Ak[vil,...,vik]:ZAM[UJ]

iel k=01i1,...,ix €l JcI

where Ag[v;] denotes evaluation on the |J|-tuple indexed by J. The alternating sum Zlc[n](—l)"_”'

inverts this: all terms with J C [n] cancel by the identity Y-, ;(=1)"~1/l = (1 — 1)"=I = 0, leaving
only J = [n]. Uniqueness follows by induction: recover A,, via polarization, subtract, and repeat.

O

(3) Definition (Degree Truncation). Let p : E — F be a polynomial map, p # 0. By Lemma (2) the
decomposition p(z) = Y, _ 2 Ax[#®*] is unique. We can hence define:

o deg(p) :=n € Ny the degree of p. By convention deg(0) = —oo.
e 7i(p) :=pr : E — F the degree-k part of p.

e Poly(p) := Ay, € L5(¥E, F) the degree-k polarization of p.

o m<i(p) € P<k(E, F) the (lower) degree truncation of p.

o Tsk(p) € Psk(E, F) the upper degree truncation of p.

We will make use of the following properties of polynomial maps:
(4) Lemma (Polynomial Properties). Let p: E — F, q: F — G be polynomial maps.

1. (Composition) The composition qop: E — G is a polynomial with deg(q o p) < deg(q) - deg(p).
2. (Lipschitz) There exists € > 0,C > 0 such that ||Aop(z)|| < C||x|| for all ||z]| < e.

3. (Upper Vanishing) We have |7k (p)(@)|/||z|* = 0 for x — 0.

4. (Lower Vanishing) If |p(z)|/||lz||* — 0 for x — 0, and k > deg(p) then p = 0.

Proof. Ad 1) Expanding q(p(z)) by multilinearity yields a sum of terms B[A;[z®71],..., A;[x®7¢]] where
Bc L(*F,G) and A; € L(7E, F) are bounded multilinear.

The composition (u1,...,ur) — B[Ai[ur],..., Ae[ur,]] is bounded multilinear, hence each term is a
homogeneous polynomial of degree j; + -+ jo < £-deg(p). Thus g o p is a polynomial with deg(qop) <
deg(q) - deg(p)-

Ad 2) Write Agp(z) = p(x) —p(0) = D27, %Aj[x@’j] with A; € L3(E, F) bounded. For |jz|| < 1 we

. A . . A
have [[]! < [[]|, hence [|Aop(a)]| < 71, Loz ]ld < Claf| with ¢ = 327, 12



Ad 3) Each homogeneous component p; of degree j > k satisfies ||p;(z)|| < Cj||z||, hence ||p;(@)||/||z|/* =
Cjllz|?=% — 0 as z — 0.

Ad 4) Assume p # 0, n = deg(p). Write p = Z?:m p; with p; = m;(p) homogeneous, p,, # 0 the minimal
non-vanishing degree.

Let m = min{j : p; # 0} < deg(p) < k be the bottom term, then p = p, + m~4p, and by (3)
limg o [|p(2)||/ll2]|* = llpa()]/lz]|*

If p # 0, let jo := min{j : p; # 0} < deg(p) < k and choose v € E with pj, (v) # 0. For t — 0F:
p(tv) /th = tio=kp. (v) + 7~ p(tv). Since jo < k, the leading term #/°~*p; (v) does not vanish as t — 0F,
contradicting ||p(z)]|/||z||* — 0.

O

4 Fréchet Differentiability

We summarize the classical notion of Fréchet differentiability (following [Lan93]), and introduce a weaker
point-wise notion of Fréchet differentiability.

(5) Definition (Fréchet differentiability [Lan93] XIIL.6). Let E, F' be normed vector spaces, Ug C E an
open subset and ¢ : Ug — F a map.

e (Forward difference) For xy € Ug let

Agy () := (0 + h) — d(x0)

the forward difference, which is defined for h € E in a neighbourhood of 0.

o (Fréchet differentiable) We say that ¢ is Fréchet differentiable at a point o € Ug if there exists a
bounded linear map L € L(E, F) such that

A d(h) — L)
T A

=0.

The map L is uniquely determined and is called the derivative of ¢ at xg, written De(x).

¢ (Continuous Fréchet differentiable) We say that ¢ is continuously Fréchet differentiable on Ug if ¢ is
Fréchet differentiable at every point « € Ug and the map: x — D¢(z) € L(FE, F) is continuous.

e (Continuous k-times Fréchet differentiability) We recursively define ¢ to be k-times continuously
Fréchet differentiable. For & > 1 we require ¢ : Ug — F' to be continuously Fréchet differentiable on
Ug,and D¢ : Ug — L(E, F) k— 1-times continuously Fréchet differentiable as a map between normed
vector spaces.

o We write C*(Ug, F) for the space of k-times continuously Fréchet differentiable functions.

(6) Proposition (Taylor Approximation [Lan93], XIIL.6). Let ¢ : Ug — F be C* as above, and ¢ € Ug.

1. The higher Fréchet differentials define symmetric multi-linear forms:
D¥¢(x0) = D(... (D)) (z0) € L(E,...,L(E,L(E,F)) = L(*E, F).

2. The associated degree-k polynomial:

| =

Dp(x0)[h®]: E = F

k
TE ¢(h) =
/=1

S

is called the degree-k Taylor polynomial of ¢ at xg. Note that we start this sum at { = 1 so that
k» _ .
Ty $(0) =0, by convention.
3. The Taylor Remainder R’;OQS =0y 0 — nggb satisfies:

Npyp =TEd+RE ¢ and ||RE s(R)||/|IR]* — 0 as h—0.



We call this sum the Taylor Decomposition of ¢ at xg.

4. Let Ayy¢ =T+ R be any other decomposition with: T € P<y(E,F), T(0) =0 a degree < k polynomial
and R : E — F with |R(h)||/||h|[* — 0 for h — 0. Then T =T¥ ¢ and R = Rk ¢.

Proof. Properties 1-3 are standard and can be found, e.g. in [Lan93], XIII.6. For the uniqueness assume
that Ayy¢ = T+ R = T' 4+ R’ are two Taylor decompositions of ¢. Then p =T -7’ = R—- R is a
polynomial of degree < k with ||p(h)||/||h||* — 0 for h — 0. By Lemma (4) we must have p = 0.

O

In the light of this Proposition, we make the following definition of point-wise Fréchet differentiability as
approximation property for functions by polynomial maps:

(7) Definition (Pointwise Fréchet decomposition at 0).

e We say that a map ¢ : Ug — F'is k-fold pointwise Fréchet differentiable at x if there exists a “Taylor”
decomposition:
Awd=T+R

where a polynomial map T' € P<(E, F) with T(0) = 0 and a residual map R : Ug — F such that
IR@)[/[l«]* = 0 as z— 0.

By (6) this decomposition is unique if it exists, and we write: Tfo(;ﬁ =T and R’;OQS = R.
o We define the degree 1 < ¢ < k Fréchet differentials as polarization of the Taylor polynomial via:

D ¢(xo) = Pol, TX ¢ € L5(“E, F)

And set D%¢(z0) = ¢(xo) € L*(°E, F) = F.

(8) Lemma (Lipschitz Continuity). If ¢ : E — F is pointwise Fréchet differentiable at x, then ¢ is
Lipschitz continuous at x, i.e. there is C > 0, > 0 so that: ||Az,¢(h)|| < C|h|| for all |h| < €.

Proof. We may assume zg = 0. Let Ag¢p = P+ R be a Taylor decomposition of order £ at 0. By Lemma
(4) there exist € > 0 and C; > 0 such that |P(h)|| < Cy||h]| for ||k|| < e. Since R(h) = o(||h||*) we have
IR < Co||n]|* < Co||h]| for ||h]| < min(e, 1). Thus [[Aed(h)l| < [P(R)]| + | R(R)|| < (C1 + Co)|A]| for
I small.

O

5 Faa di Bruno - Composition Form

(9) Theorem (Multivariate Faa di Bruno - Composition Form). Let E, F,G be normed vector spaces.
Let Ug C E be open, and xg € Ug and ¢ : B — F be k-fold pointwise Fréchet differentiable at xo. Let
Up C F open with yo = ¢(x9) € Up and ¢ : Up — G be k-fold pointwise Fréchet differentiable at yo.

Then:

o The composition i o ¢ : Ug — G is pointwise k-fold Fréchet differentiable at xq.
e The Taylor Polynomials compose as polynomial maps in P(E,G):

T (Yo ¢) = m<p(Ty 1 o T ).

Proof. By translation, we may assume zo = 0 and ¢(xg) = yo = 0 as well as 1(yo) = 0 throughout the
proof. In particular Ay ¢ = ¢, Ay = .

Choose Taylor decompositions ¢ = P+ R and ¥ = @Q + S, with polynomials P,Q of degree < k and
remainders R, S vanishing to order k at 0. Now write ¢ o ¢ = Q(¢) + S(¢) = <k (Q o P) + E, with:

E:=Q(¢)+ 5(¢) — Q(P) + m>1(Q o P).



We have to show that ||E(z)||/||z||* — 0 for x — 0.
Clearly ||7~x(Q o P)||/||z||¥ — 0 for z — 0 be Lemma (4).

To see that ||S(é(x))||/||x]|¥ — 0 we argue as follows: By the Lipschitz property of ¢ (Lemma (8)),
we find § > 0,C > 0 so that ||¢p(x)]| < C|lz| for all ||z| < §. Since S is a Taylor residual we have
ISl < n()llyll* with 5(y) — 0 as y — 0. Hence [|S(¢(x))[l/z]* < n(¢(z))C* = 0 as z — 0.
For the term Q(P + R) — Q(P), we decompose Q(y) = Z?:o Qe(y) = >, £ Be[y®"] where Q; = m,Q and
By =Pol,; Q. Then
1 . .
— ®i P,
QP +R) = Qu(P) = 3, 7= Be(P¥, R¥).
i+j=L
Jj=1

It suffices to show that each summand B, (P®*, R®7) is in o(||z||*). To this end we note that:

o [1Be(P(2)®", R(x)®)|| < [|Bell - | P(@)|'[ R(=)||” as By € L*(“F, G) bounded.
o ||[P(z)|| < C||z|| for ||z|| < ¢ as P is Lipschitz (Lemma (4)) and P(0) = 0.
e ||R(z)|| < n(x)|z|/* with n(z) — 0 for  — 0 as R is a Taylor remainder.

So that: _ _ _ _ o
|Be(P®* (), R (2)[|/ | =" < | Bell C* ma)? ||2[|'T0~D% 0 as 2z —0

For the last step, note that j > 1 so the factor n(x)’ — 0 as 2 — 0, and i+ (j — 1)k > 0 hence ||z||*+(—Dk
stays bounded (and even goes to zero for j > 2).

O

6 Faa di Bruno - Partition Form

(10) Definition. Let I be a finite set.

e An un-ordered (non-empty) partition 7 of I is a set @ = By, ..., B, of subsets B; C I (“blocks”), so
that B; are disjoint, I = U!_, B; and B; # ). We write m F I in this case and call |x| = r the rank of
.

e An ordered partition 7 of I is a tuple 7 = (By, ..., B,) of subsets B; C I, so that B; are disjoint and
I =U_B,. We write 7 |= I in this case.
Note that we allow empty blocks for ordered partitions, so that this datum is equivalent to a map
o:1— [r] with |7|=7r B; =071i.

o For a set X, a tuple v = (v;)ie; € X! and a block B C I, we write vp := (vp)pen € XP for the
restricted tuple.

(11) Lemma (Composition Polarization). If k = my + -+ m, € Ny and A; € L("™E,F), and
Be L5("F,G). Let

1 1
— _ ®@m m,
H(x)_B[mllAl[m 1]"”’mr!AT[x 1]
then:
Poly,(H)[u1, ..., uz] = > B[Ai[ug,], .., AcJug,]].
(Bh"'vB"')‘:[k]:
|Bi|=m;
Proof. Let Glug,...,ux] be the claimed expression for Poly(H)[u1, ..., ux]. As both sides are symmetric,
bounded k-multi-linear forms in uy, ..., u; we only have to validate that ;G[z®*] = H. We find:
k!
k] ®m @mr1] . ®@m Q@m,
G[z®"] = Z B[A[z®™],..., Az ]]_ml!---mr! B[A[z®™], ..., Ap[z®™"]]
(B1,..,Br) k]| Bi|=m;
as there are k!/m4!...m,! ordered partitions of a set of [k] elements into subsets of order my, ..., m,.

Re-arranging the factorials yields the claimed.



O

(12) Theorem (Multivariate Faa di Bruno - Partition Form). Let g € Ug C E and set yo := ¢(xg) € F.
Assume that ¢ : Ug — F is pointwise k-fold Fréchet differentiable at xq and that ¢ : F — G is pointwise
k-fold Fréchet differentiable at yg. For uy,...,ur € E we have:

k
Do ¢)(xo)[ur, ..., ux] = > > D(yo) [DIP g (x0)[ug, ], .., DI p(wo)us,]].-
r=1 wk-[k]
|7|=r
Proof. Fix uy,...,u;r € E. By translation, we may again assume zy = 0 and yg = 0 throughout the

proof. Fix Taylor decompositions ¢ = P+ R, 1) = Q 4+ S with P, Q polynomial of degree < k. By (9) we
have T o ¢ = < (Q o P), and hence D¥ (1) o $)(0) = Poly(Q o P).

Write the polynomial maps in polarized form as

Pulz®"],  Qy) =Y = Q:ly®).

T
m=1 r=1

Expanding @, by multilinearity and isolating the degree k term gives:

& 1 1 om 1 o
WkQ(P(x)) = Z Z QT‘I:i'P"Ll[x 1],--.,7'13,,”7“[56 T”

r! mq! m,!
r=1 mi,e,m,>1 ! r

my+---+m.=k

Applying Poly, on both sides making use of the composition formula from Lemma (11) now gives:

k
1
Dk(¢0¢)(0)[u1,...7uk] = E E E EQT[Pml[uBI],...,Pmr[uBr]].
r=1 my,....m,>1 (By,...,B;)=[k]

mittme=k  |B;|=m;

Now observe that there are exactly r! re-orderings of each ordered partition (Bj,...,B,), and these re-
orderings yield the same summand as @, is symmetric. Hence the sum over m;, B |= [k] can be replaced
by a single sum over un-ordered partitions 7 - [k] with given block sizes | B;| = m;. Furthermore we have
Q- = D"(0), P, = D™¢(0) by definition. Substituting these into the above formulas yields the claim.

O
7 Faa di Bruno - Multi-index Form
(13) Definition (Multi-Indices).
o Elements v = (11,...,v4) € N& are called multi-indices of dimension d. We write |v| = Y, v; for the
degree and v! := vq!- - py! for the factorial.
o If A is a commutative algebra and v € A% is a d-tuple, then we write: v” = 0 €A
o If E=R? write z',...,2% : E — R for the coordinate projections, then the set z*,v € N¢ is a basis

of Polynomial functions P(FE).

o If U C R¥is open and ¢ : U — F is pointwise k-fold Fréchet differentiable at xo € U. Let v € N& with
k = |v|. We define the partial derivative 8”¢(xo) € F via the basis expansion of T ¢ € P(R?, F) =
P(RY) ® F as coefficient, of z¥ /v!:

Tho= Y. — 9dlao).

1<|v|<k



(14) Theorem (Multivariate Faa di Bruno - Multi-index form). Let 2o € U C R? and set yo := ¢(x¢) €
R™. Assume that ¢ : U — R™ is pointwise k-fold Fréchet differentiable at xg and that f : R — R is
pointwise k-fold Fréchet differentiable at yq.

For a € N¢, a # 0 the partial derivative of the composition are given by:

0%(fo S &
(faijb)(xo) = Y fw) > Z Hﬁll ad)';?ﬁ) ’
feNy szl () r=l
1<|BI<]al

Where (x) runs over all (a1,...,as; Bi,...,Bs) witha; € NS, B; € NB, a; #0,8; #0 and ag < -+ <
for a total order on N¢ satisfying the constraints: a1|Bi|+ -+ as|Bs| = a and By + -+ + Bs = B.

Proof. We may assume that o = yo = f(yo) = 0, without loss of generality.

Step 1: Taylor Expansion) Write z!, ...,z for the coordinate functions on R? and y!,...,y" for the
coordinates on R". Expand the Taylor polynomials of ¢ and f as

k z® k
P=Tj¢= ) — pa FTf—Zﬂ,fﬁ,
aENg BENG
1<|a|<k 1<|8I<k
with p, = 0%¢(20) € R™ with components p, = 9%¢( (z¢) and fz = 9° f(yo) € R.

Step 2: Polynomial Composition) By Theorem (9) we have 0"(f o ¢)(0)/v! = [2"](F o P). We compute
[x¥](F o P) as follows: Let m > 0. For each coordinate y* we have:

(yioP)mz(Z%xa)m: 3 ﬁiﬁxai: ) (M)H(Z%xa)mg

aENg al,A..,amENg j=1 pi:Ng%No 0 aENg

Note that there are only finitely many maps p : NI — Ny with > p(a) = n, and that each of those
maps is finitely supported i.e. p(a) = 0 except for finitely many o € N&. In the second step the map p;
counts the number of occurrences of « in a given tuple (a1,..., o), ie. pi(a) = #{j|a; =a}. For
each given map p; we have m!/ HaeNg pi(a)! tuples which give the same map.

Now let B € NP and apply this formula to each m = 3; € Ny. Write p : N¢ — NZ, p(a) =
(p1(@), ..., pn(a)), so that:

n

vorr=Tiwon = () TG

i=1 p:Ng%Ng i=1

> pla)=p

1 ( a)p(a) alp(a
= > (10 m(ﬁ)m) e )

pNINP aeNG

>, Pla)=p

Substituting into F'(P(x)) and extracting the z® coefficient gives:



0%(f o )0 1 N P()
AR o) =0 X Swerr = ¥ S (1T i)

BENY p(*) ~veNd

Here (%) runs over all maps p : N¢ — NP satisfying >, p(y) =B and 32 7lp(v)] = a. We convert this

sum into a tuple sum as follows: Fix a total order “<” on N¢ and write Supp(p) = {a1 < -+ < a,} C
Ng. Setting 8; = p(a;) € N& for j = 1,...,s, the datum of a map p : N¢ — NZ is equivalent to a
tuple (ay,...,a4;B1,...,0s) with a,, € N¢, 8. € Ng \ 0 and a; < --- < a,. The constraints become:

Br+ -+ Bs=pBand |Bilag + -+ |Bs|as = a.

Since P(0) = 0, we have py = 0, so only tuples with a; # 0 for all j contribute. The constraint
|Bilan + -+ + [Bs|as = o forces 1 < [B] < |al: indeed |af = 3, [oy]|B8;] > 32, 18] = [B] since |a;| > 1,
and « # 0 implies s > 1 hence g # 0. This concludes the proof.

O

As a by-product of the proof, we obtain the following map-form of the Faa di Bruno:
(15) Corollary (Map-Form Faa di Bruno). In the setting of (14) we have the following formula:

ox(f o¢ T 1 (awqg)p(v)
: Z 8ﬁf (vo) Z( (y)lp(I )

BEeNy p () v

OQ_

Here (%) runs over all maps p: N3\ 0 — NI satisfying >, p(v) =B and 32 vlp(y)| = o

IRemark (Factorials and Symmetry). Controlling the complexity of combinatorial expressions is a
key technical difficulty when working with Fad di Bruno. An important insight in this presentation is that
factorials are always associated with symmetrization: passing from multilinear maps to polynomials via
diagonal evaluation, or quotienting out ordering information (e.g., from ordered to unordered partitions).
Formulas are often simpler when symmetry is not yet imposed. We deliberately keep each factorial adjacent
to the corresponding symmetrized quantity to make the combinatorics transparent.

8 Leibniz Formula

As an example demonstrating the utility of the Faa di Bruno formula in composition form, we provide a
general Leibniz rule.

(16) Proposition (Leibniz rule). Let E be a real normed vector space and let fi,..., fn : E — R be
k-times Fréchet differentiable at a point x € E. Denote by TX(f) = f(z) + TE(f) = an o o D™ fIRE™]
the augmented Taylor polynomial (including the degree=0) term. Then:

1. (Taylor form). N N N
Ty(freo fo) = m<n(TE(f1) - Ti ().

2. (Partition form.) For uy,...,u € E,

DM (i f) @l ud = Y DIPIA@)up,)- DI fo (@) us, ]
(B1,--,Bn)[E[K]

Where we use the identity D° f;(x)[] = fi(x) for the empty block.
3. (Multi-index form.) If E = R? and v € Ng with |v| = k, then
o o f1(x 0" fr(x
—(f1 - fa)(@) = Z ylll( )... V!( )

V!

d
Vl!"'7V7L€N()
Vit tvn=r

10



where the sum ranges over all tuples (v1,...,vp) € (Ng)” with v; € Ng with vy + -+ v, = v.

Proof. For k =0 both expressions are trivially true. Hence we may assume k > 1.

Ad 1) Set ¢ = (fi, ., fa) : E = R, and 9(y) = [T\, 5 : R* 5 R, ci = fi(x) so that o d = o+ [

and ¢ =

As (y)

().

=1, i is a polynomial itself, the Taylor polynomial at ¢ can be calculated by translation and

degree truncation: Ty (h) = m<i(¥(c+ h) —(c)). Furthermore T*¢ = (T*f1,..., TFf,) € P(E,R") =
P(E) ® R".

Now Faa di Bruno in Composition form (Theorem (9)) yields TX(f1 -+ fn) = m<k(ITi=,(c;i + TE f;) —
[Ti, ¢i). Adding [}, ¢; on both sides gives the claimed identity:

Ad 2) The partition formula is derived by applying Polj, to both sides of (1). We hence find:

DA+ ) = Poly ]| Z D" fi() 1] = Poly 2 H D™ £ () [H°™).
1=1m= 0 mi,...,mn €Ny i=1 ’L
mi+-+mp=k
The claim follows by the Polarization Lemma (11) applied to Blay,...,a,] =[] a;.

Ad 3) Expanding the taylor series in multi-index form T f;(h) = ZOS\/LK’C i "ok f;(x), we find:

PG ] X Mo Y DD )

vq! Vp!
=1 0<|M|<k Vit trp=vr
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