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Abstract

We give an elementary, self-contained proof of the multi-variate Faa di Bruno formula as a com-
position theorem for Taylor Polynomials in the setting of real normed vector spaces: if ϕ : E → F

and ψ : F → G are k-fold Fréchet differentiable at the points x ∈ E, y = ϕ(x) ∈ F then the Taylor
Polynomials compose in the natural way:

T k
x (ψ ◦ ϕ) = π≤k(T k

y (ψ) ◦ T k
x (ϕ)).

From this composition principle we derive (i) the partition formula for higher Fréchet derivatives
and (ii) the multi-index coefficient formula established by Constantine–Savits.

While many recent papers frame Faà di Bruno via Bell polynomials, trees, Hopf algebras, jets, or
coordinate combinatorics, our approach isolates the analytic core—functoriality of pointwise Taylor
approximation—under minimal assumptions. We avoid making finite-dimensionality or completeness
assumptions and work with a weak notion of pointwise Fréchet differentiability. The familiar com-
binatorial coefficients arise mechanically from two standard operations: polarization and coefficient
extraction from composed Taylor polynomials. The result is a short, self-contained account that
covers all relevant versions of the Formula in a very general setting.

As an application we present a general higher-order Leibniz rule in both partition and multi-index
form.
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1 Introduction

Faà di Bruno–type formulas describe how higher derivatives behave under composition. In the classical
one-variable setting, they express (f ◦ g)(n) as a polynomial in the derivatives of f and g with explicitly
computable combinatorial coefficients (often packaged by Bell polynomials). In 1855 Faà di Bruno derived
the identity (for f, g : R → R)

dn

dxn

(
f ◦ g

)
(x) =

n∑
k=1

f (k)(g(x))
∑
(∗)

n!
m1! · · ·mn!

n∏
j=1

(g(j)(x)
j!

)mj

.
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Here the sum (∗) runs over all tuples m1, . . . ,mn ∈ N0 constrained by the conditions m1 + · · · +mn = k

and m1 + 2m2 + · · · + nmn = n.
This formula admits several equivalent repackagings in terms of Bell polynomials, partition sums, umbral
expressions — each highlighting different facets of the combinatorial structure.
In several variables the underlying pattern remains the same, but the bookkeeping becomes substantially
heavier: one must track multi-index exponents, manage products over vector-valued derivatives, and
account for the richer symmetry of set partitions with block multiplicities. A complete explicit multi-
variate formula with fully worked-out combinatorial coefficients was only established by Constantine and
Savits in 1996 - 141 years after Faà di Bruno’s original work.
This note takes a deliberately “analytic-first” viewpoint. We work with maps between real normed vector
spaces and isolate the following question as the core of Faà di Bruno:

If ϕ is approximated near x0 by a polynomial T k
x0
ϕ of degree ≤ k, and ψ is approximated near

y0 = ϕ(x0) by a polynomial T k
y0
ψ of degree ≤ k, what polynomial approximates ψ ◦ ϕ near

x0?

There is one natural candidate: the polynomial composition T k
y0
ψ ◦ T k

x0
ϕ, truncated to degree ≤ k.

Our first main result confirms that this is correct under minimal hypotheses: pointwise k-fold Fréchet
differentiability at a single point (no global smoothness assumptions, and no completeness or finite-
dimensionality requirements). Concretely, we show that if ϕ and ψ admit pointwise Taylor decompositions
of order k at x0 and y0 respectively, then ψ ◦ ϕ does as well, with

T k
x0

(ψ ◦ ϕ) = π≤k

(
T k

y0
ψ ◦ T k

x0
ϕ

)
.

Once this “composition of Taylor polynomials” principle is established, the familiar combinatorial formu-
las fall out systematically:

• the partition form is obtained by polarization (passing from homogeneous polynomials to symmetric
multilinear maps), yielding a formula for Dk(ψ ◦ ϕ)(0) as a sum over set partitions of [k];

• the multi-index form is obtained by coefficient extraction in coordinates: expand the Taylor poly-
nomials in a monomial basis and compute the coefficient of xν in T k

y0
ψ

(
T k

x0
ϕ(x)

)
. This produces an

explicit coefficient identity that recovers the multi-index Faà di Bruno formula (in particular the struc-
ture underlying the Constantine–Savits coefficients) as a corollary of a purely algebraic multinomial
bookkeeping lemma.

As an application we include a higher-order Leibniz rule in two parallel forms: a partition identity for
Fréchet derivatives and a multi-index identity for partial derivatives. The proof is deliberately routed
through the Faà di Bruno formula in both incarnations.

2 Related Work

There is a large literature around Faà di Bruno formulas and their multivariate generalizations; we briefly
summarize the most relevant references and how they compare to the present treatment.
More directly related to this paper:

• Faà di Bruno (1855, F. Faà di Bruno. “Sullo sviluppo delle funzioni”) [dB55] [dB57]. The original
one-dimensional formulas introducing the identity that now bears his name, in Italian (1855) and
French (1857). These short notes are the primary historical sources.

• Scott (1861, “Formulae of Successive Differentiation”) [Sco61] [Joh02]. In the one-variable case g ◦ f :
R → R, Scott’s identity (as recounted by Johnson) gives a 1D Taylor-composition viewpoint via
coefficient extraction: apply Taylor’s theorem to g in the increment f(t + h) − f(t) and read off the
coefficient of hm.

• Constantine–Savits (1996, “A Multivariate Faà di Bruno Formula with Applications”) [CS96]. Foun-
dational multivariate Faà di Bruno formula for arbitrary partial derivatives of a composition h(x) =

2



f(g(x)) with f : Rm → R and g : Rd → Rm, expressed in full multiindex form using set partitions and
multivariate Stirling numbers. Their proof is combinatorial and coordinate-based. The multiindex
form stated here recovers their coefficient formula but is derived from a short argument based on jets
and polarized Fréchet derivatives.

• Hernández Encinas–Muñoz Masqué (2003, “A short proof of the generalized Faà di Bruno’s formula”)
[EM03]. Derive the multivariate Faà di Bruno formula by working at the level of r-jets (higher
cotangent spaces) and using induced algebra morphisms on truncated local rings; in coordinates this
amounts to composing truncated multivariate power series and applying the multinomial theorem.
This is close in spirit to our “Taylor polynomials compose” viewpoint, but their formulation stays in
the finite-dimensional multi-index setting and is phrased in the language of higher cotangent spaces
rather than as an explicit functoriality statement for pointwise Taylor polynomials between general
normed spaces.

• Levy (2006, “Why do partitions occur in Faà di Bruno’s chain rule for higher derivatives?”) [Lev06].
Gives what is, to our knowledge, the only explicit partition-form Faà di Bruno formula for n-th
Fréchet derivatives between Banach spaces, and explains why partitions appear. The first part uses
an algebraic description in terms of coalgebras on germs; the second part proves the Banach-space
partition formula via iterated finite differences on parallelepipeds. The partition form proved in this
paper agrees with Levy’s formula but is obtained from a very short jet-based computation.

• Duarte–Torres (2008, “A discrete Faà di Bruno’s formula”) [DT08]. Develop a discrete (finite-difference)
Faà di Bruno formula for maps between linear spaces, valid for general functions of several variables,
by building an algebra of symbolic finite-difference expressions and expanding ∆α(f ◦ g) in terms of
finite differences of f and g. Their analysis also yields a streamlined proof of the smooth Faà di Bruno
formula when one passes from finite differences to derivatives; philosophically this is close to viewing
higher derivatives as jets, but their primary emphasis is on the discrete setting.

3 Polynomials

We present a brief overview of the basic theory of Polynomials in an infinite dimensional setting of normed
vector spaces following [Din99]. The reader who is only interested in the finite dimensional setting can
safely skip this section.

(1) Definition (Polynomials [Din99]). Let E,F be real normed vector spaces.

• Write L(E,F ) for the vector space of bounded linear maps A : E → F , with operator norm:

∥A∥ = sup
v∈E,∥v∥≤1

∥A(v)∥

• For k ≥ 0 let L(kE,F ) be the space of bounded k-fold multi-linear maps Ak : E×k → F , with operator
norm:

∥Ak∥ = sup
v1,...,vk∈E

∥vi∥≤1

∥Ak(v1, . . . , vk)∥.

• Let Ls(kE,F ) ⊂ L(kE,F ) be the subspace of symmetric multi-linear maps.
• A map p : E → F is called a k-homogeneous polynomial if there exists A ∈ Ls(kE,F ) such that

p(x) = 1
k! A[x, . . . , x] = 1

k! A[x⊗k], x ∈ E.

We write Pk(E,F ) ⊂ Map(E,F ) for the space of such maps.
• A polynomial map p : E → F is a finite sum of homogeneous polynomials:

p =
n∑

k=0
pk with pk ∈ Pk(E,F ).
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We write P(E,F ) :=
∑

k≥0 Pk(E,F ) ⊂ Map(E,F ) for the space of all polynomial maps, and
P≤n(E,F ) :=

∑n
k=0 Pk(E,F ) subspace of polynomial maps of degree ≤ n.

• For F = R we write P(E) := P(E,R).

(2) Lemma (Polarization). Let p : E → F be a polynomial map, represented as a sum of multi-linear
forms p(x) =

∑n
k=0 pk, pk = 1

k!Ak[x⊗k] with Ak ∈ Ls(kE,F ).

• The top-degree multi-linear form An ∈ Ls(nE,F ) can be recovered from p : E → F via:

An[v1, . . . , vn] =
∑

I⊂[n]

(−1)n−|I|p(
∑
i∈I

vi)

for vi ∈ E.
• For a polynomial map p : E → F , p ̸= 0 the representation

p(x) =
n∑

k=0

1
k!Ak[x⊗k]

in terms of n ∈ N0, Ak ∈ Ls(kE,F ) is unique.

Proof. The polarization formula is Möbius inversion on the Boolean lattice 2[n]: By multilinearity,

p(
∑
i∈I

vi) =
n∑

k=0

∑
i1,...,ik∈I

1
k!Ak[vi1 , . . . , vik

] =
∑
J⊂I

A|J|[vJ ]

where Ak[vJ ] denotes evaluation on the |J |-tuple indexed by J . The alternating sum
∑

I⊂[n](−1)n−|I|

inverts this: all terms with J ⊊ [n] cancel by the identity
∑

I⊃J(−1)n−|I| = (1 − 1)n−|J| = 0, leaving
only J = [n]. Uniqueness follows by induction: recover An via polarization, subtract, and repeat.

(3) Definition (Degree Truncation). Let p : E → F be a polynomial map, p ̸= 0. By Lemma (2) the
decomposition p(x) =

∑n
k=0

1
k!Ak[x⊗k] is unique. We can hence define:

• deg(p) := n ∈ N0 the degree of p. By convention deg(0) = −∞.
• πk(p) := pk : E → F the degree-k part of p.
• Polk(p) := Ak ∈ Ls(kE,F ) the degree-k polarization of p.
• π≤k(p) ∈ P≤k(E,F ) the (lower) degree truncation of p.
• π>k(p) ∈ P>k(E,F ) the upper degree truncation of p.

We will make use of the following properties of polynomial maps:

(4) Lemma (Polynomial Properties). Let p : E → F , q : F → G be polynomial maps.

1. (Composition) The composition q ◦ p : E → G is a polynomial with deg(q ◦ p) ≤ deg(q) · deg(p).
2. (Lipschitz) There exists ε > 0, C > 0 such that ∥∆0p(x)∥ ≤ C∥x∥ for all ∥x∥ < ε.
3. (Upper Vanishing) We have ∥π>k(p)(x)∥/∥x∥k → 0 for x → 0.
4. (Lower Vanishing) If ∥p(x)∥/∥x∥k → 0 for x → 0, and k ≥ deg(p) then p = 0.

Proof. Ad 1) Expanding q(p(x)) by multilinearity yields a sum of terms B[A1[x⊗j1 ], . . . , Aℓ[x⊗jℓ ]] where
B ∈ L(ℓF,G) and Ai ∈ L(jiE,F ) are bounded multilinear.
The composition (u1, . . . , uk) 7→ B[A1[uI1 ], . . . , Aℓ[uIℓ

]] is bounded multilinear, hence each term is a
homogeneous polynomial of degree j1 + · · · + jℓ ≤ ℓ · deg(p). Thus q ◦ p is a polynomial with deg(q ◦ p) ≤
deg(q) · deg(p).
Ad 2) Write ∆0p(x) = p(x) − p(0) =

∑m
j=1

1
j!Aj [x⊗j ] with Aj ∈ Ls(jE,F ) bounded. For ∥x∥ < 1 we

have ∥x∥j ≤ ∥x∥, hence ∥∆0p(x)∥ ≤
∑m

j=1
∥Aj∥

j! ∥x∥j ≤ C∥x∥ with C =
∑m

j=1
∥Aj∥

j! .
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Ad 3) Each homogeneous component pj of degree j > k satisfies ∥pj(x)∥ ≤ Cj∥x∥j , hence ∥pj(x)∥/∥x∥k =
Cj∥x∥j−k → 0 as x → 0.
Ad 4) Assume p ̸= 0, n = deg(p). Write p =

∑n
j=m pj with pj = πj(p) homogeneous, pm ̸= 0 the minimal

non-vanishing degree.
Let m = min{j : pj ̸= 0} ≤ deg(p) ≤ k be the bottom term, then p = pm + π>dp, and by (3)
limx→0 ∥p(x)∥/∥x∥k = ∥pd(x)∥/∥x∥k

If p ̸= 0, let j0 := min{j : pj ̸= 0} ≤ deg(p) ≤ k and choose v ∈ E with pj0(v) ̸= 0. For t → 0+:
p(tv)/tk = tj0−kpj0(v) +π>j0p(tv). Since j0 ≤ k, the leading term tj0−kpj0(v) does not vanish as t → 0+,
contradicting ∥p(x)∥/∥x∥k → 0.

4 Fréchet Differentiability

We summarize the classical notion of Fréchet differentiability (following [Lan93]), and introduce a weaker
point-wise notion of Fréchet differentiability.

(5) Definition (Fréchet differentiability [Lan93] XIII.6). Let E,F be normed vector spaces, UE ⊂ E an
open subset and ϕ : UE → F a map.

• (Forward difference) For x0 ∈ UE let

∆x0ϕ(h) := ϕ(x0 + h) − ϕ(x0)

the forward difference, which is defined for h ∈ E in a neighbourhood of 0.
• (Fréchet differentiable) We say that ϕ is Fréchet differentiable at a point x0 ∈ UE if there exists a

bounded linear map L ∈ L(E,F ) such that

lim
h→0

∥∆x0ϕ(h) − L(h)∥
∥h∥

= 0.

The map L is uniquely determined and is called the derivative of ϕ at x0, written Dϕ(x0).
• (Continuous Fréchet differentiable) We say that ϕ is continuously Fréchet differentiable on UE if ϕ is

Fréchet differentiable at every point x ∈ UE and the map: x 7→ Dϕ(x) ∈ L(E,F ) is continuous.
• (Continuous k-times Fréchet differentiability) We recursively define ϕ to be k-times continuously

Fréchet differentiable. For k ≥ 1 we require ϕ : UE → F to be continuously Fréchet differentiable on
UE , and Dϕ : UE → L(E,F ) k−1-times continuously Fréchet differentiable as a map between normed
vector spaces.

• We write Ck(UE , F ) for the space of k-times continuously Fréchet differentiable functions.

(6) Proposition (Taylor Approximation [Lan93], XIII.6). Let ϕ : UE → F be Ck as above, and x0 ∈ UE.

1. The higher Fréchet differentials define symmetric multi-linear forms:

Dkϕ(x0) = D(. . . (Dϕ))(x0) ∈ L(E, . . . ,L(E,L(E,F )) ∼= Ls(kE,F ).

2. The associated degree-k polynomial:

T k
x0
ϕ(h) =

k∑
ℓ=1

1
ℓ!D

ℓϕ(x0)[h⊗ℓ] : E → F

is called the degree-k Taylor polynomial of ϕ at x0. Note that we start this sum at ℓ = 1 so that
T k

x0
ϕ(0) = 0, by convention.

3. The Taylor Remainder Rk
x0
ϕ = ∆x0ϕ− T k

x0
ϕ satisfies:

∆x0ϕ = T k
x0
ϕ+Rk

x0
ϕ and ∥Rk

x0
ϕ(h)∥/∥h∥k → 0 as h → 0.
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We call this sum the Taylor Decomposition of ϕ at x0.
4. Let ∆x0ϕ = T +R be any other decomposition with: T ∈ P≤k(E,F ), T (0) = 0 a degree ≤ k polynomial

and R : E → F with ∥R(h)∥/∥h∥k → 0 for h → 0. Then T = T k
x0
ϕ and R = Rk

x0
ϕ.

Proof. Properties 1-3 are standard and can be found, e.g. in [Lan93], XIII.6. For the uniqueness assume
that ∆x0ϕ = T + R = T ′ + R′ are two Taylor decompositions of ϕ. Then p = T − T ′ = R − R′ is a
polynomial of degree ≤ k with ∥p(h)∥/∥h∥k → 0 for h → 0. By Lemma (4) we must have p = 0.

In the light of this Proposition, we make the following definition of point-wise Fréchet differentiability as
approximation property for functions by polynomial maps:

(7) Definition (Pointwise Fréchet decomposition at 0).

• We say that a map ϕ : UE → F is k-fold pointwise Fréchet differentiable at x0 if there exists a “Taylor”
decomposition:

∆x0ϕ = T +R

where a polynomial map T ∈ P≤k(E,F ) with T (0) = 0 and a residual map R : UE → F such that

∥R(x)∥ / ∥x∥k → 0 as x → 0.

By (6) this decomposition is unique if it exists, and we write: T k
x0
ϕ = T and Rk

x0
ϕ = R.

• We define the degree 1 ≤ ℓ ≤ k Fréchet differentials as polarization of the Taylor polynomial via:

Dℓϕ(x0) = Polℓ T k
x0
ϕ ∈ Ls(ℓE,F )

And set D0ϕ(x0) = ϕ(x0) ∈ Ls(0E,F ) = F .

(8) Lemma (Lipschitz Continuity). If ϕ : E → F is pointwise Fréchet differentiable at x, then ϕ is
Lipschitz continuous at x, i.e. there is C > 0, ε > 0 so that: ∥∆x0ϕ(h)∥ < C∥h∥ for all ∥h∥ < ε.

Proof. We may assume x0 = 0. Let ∆0ϕ = P +R be a Taylor decomposition of order k at 0. By Lemma
(4) there exist ε > 0 and C1 > 0 such that ∥P (h)∥ ≤ C1∥h∥ for ∥h∥ < ε. Since R(h) = o(∥h∥k) we have
∥R(h)∥ ≤ C2∥h∥k ≤ C2∥h∥ for ∥h∥ < min(ε, 1). Thus ∥∆0ϕ(h)∥ ≤ ∥P (h)∥ + ∥R(h)∥ ≤ (C1 + C2)∥h∥ for
∥h∥ small.

5 Faa di Bruno - Composition Form

(9) Theorem (Multivariate Faà di Bruno - Composition Form). Let E,F,G be normed vector spaces.
Let UE ⊂ E be open, and x0 ∈ UE and ϕ : E → F be k-fold pointwise Fréchet differentiable at x0. Let
UF ⊂ F open with y0 = ϕ(x0) ∈ UF and ψ : UF → G be k-fold pointwise Fréchet differentiable at y0.

Then:

• The composition ψ ◦ ϕ : UE → G is pointwise k-fold Fréchet differentiable at x0.
• The Taylor Polynomials compose as polynomial maps in P(E,G):

T k
x0

(ψ ◦ ϕ) = π≤k(T k
y0
ψ ◦ T k

x0
ϕ).

Proof. By translation, we may assume x0 = 0 and ϕ(x0) = y0 = 0 as well as ψ(y0) = 0 throughout the
proof. In particular ∆x0ϕ = ϕ, ∆y0ψ = ψ.
Choose Taylor decompositions ϕ = P + R and ψ = Q + S, with polynomials P,Q of degree ≤ k and
remainders R,S vanishing to order k at 0. Now write ψ ◦ ϕ = Q(ϕ) + S(ϕ) = π≤k(Q ◦ P ) + E, with:

E := Q(ϕ) + S(ϕ) −Q(P ) + π>k(Q ◦ P ).
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We have to show that ∥E(x)∥/∥x∥k → 0 for x → 0.
Clearly ∥π>k(Q ◦ P )∥/∥x∥k → 0 for x → 0 be Lemma (4).
To see that ∥S(ϕ(x))∥/∥x∥k → 0 we argue as follows: By the Lipschitz property of ϕ (Lemma (8)),
we find δ > 0, C > 0 so that ∥ϕ(x)∥ < C∥x∥ for all ∥x∥ < δ. Since S is a Taylor residual we have
∥S(y)∥ < η(y)∥y∥k with η(y) → 0 as y → 0. Hence ∥S(ϕ(x))∥/∥x∥k ≤ η(ϕ(x))Ck → 0 as x → 0.
For the term Q(P +R) −Q(P ), we decompose Q(y) =

∑k
ℓ=0 Qℓ(y) =

∑
ℓ

1
ℓ!Bℓ[y⊗ℓ] where Qℓ = πℓQ and

Bℓ = Polℓ Q. Then
Qℓ(P +R) −Qℓ(P ) =

∑
i+j=ℓ

j≥1

1
i! j! Bℓ

(
P⊗i, R⊗j

)
.

It suffices to show that each summand Bℓ

(
P⊗i, R⊗j) is in o(∥x∥k). To this end we note that:

• ∥Bℓ(P (x)⊗i, R(x)⊗j)∥ ≤ ∥Bℓ∥ · ∥P (x)∥i∥R(x)∥j as Bℓ ∈ Ls(ℓF,G) bounded.
• ∥P (x)∥ ≤ C∥x∥ for ∥x∥ < δ as P is Lipschitz (Lemma (4)) and P (0) = 0.
• ∥R(x)∥ < η(x)∥x∥k with η(x) → 0 for x → 0 as R is a Taylor remainder.

So that:
∥Bℓ(P⊗i(x), R⊗j(x))∥/∥x∥k ≤ ∥Bℓ∥ Ci η(x)j ∥x∥i+(j−1)k → 0 as x → 0

For the last step, note that j ≥ 1 so the factor η(x)j → 0 as x → 0, and i+(j−1)k ≥ 0 hence ∥x∥i+(j−1)k

stays bounded (and even goes to zero for j ≥ 2).

6 Faa di Bruno - Partition Form

(10) Definition. Let I be a finite set.

• An un-ordered (non-empty) partition π of I is a set π = B1, . . . , Br of subsets Bi ⊂ I (“blocks”), so
that Bi are disjoint, I = ∪r

i=1Bi and Bi ̸= ∅. We write π ⊢ I in this case and call |π| = r the rank of
π.

• An ordered partition π of I is a tuple π = (B1, . . . , Br) of subsets Bi ⊂ I, so that Bi are disjoint and
I = ∪r

i=1Bi. We write π |= I in this case.
Note that we allow empty blocks for ordered partitions, so that this datum is equivalent to a map
σ : I → [r] with |π| = r Bi = σ−1i.

• For a set X, a tuple v = (vi)i∈I ∈ XI and a block B ⊂ I, we write vB := (vb)b∈B ∈ XB for the
restricted tuple.

(11) Lemma (Composition Polarization). If k = m1 + · · · + mr ∈ N0 and Ai ∈ Ls(miE,F ), and
B ∈ Ls(rF,G). Let

H(x) = B[ 1
m1!A1[x⊗m1 ], . . . , 1

mr!Ar[x⊗mr ]]

then:
Polk(H)[u1, . . . , uk] =

∑
(B1,...,Br)|=[k],

|Bi|=mi

B[A1[uB1 ], . . . , Ar[uBr
]].

Proof. Let G[u1, . . . , uk] be the claimed expression for Polk(H)[u1, . . . , uk]. As both sides are symmetric,
bounded k-multi-linear forms in u1, . . . , uk we only have to validate that 1

k!G[x⊗k] = H. We find:

G[x⊗k] =
∑

(B1,...,Br)|=[k],|Bi|=mi

B[A1[x⊗m1 ], . . . , Ar[x⊗mr ]] = k!
m1! . . .mr! ·B[A1[x⊗m1 ], . . . , Ar[x⊗mr ]]

as there are k!/m1! . . .mr! ordered partitions of a set of [k] elements into subsets of order m1, . . . ,mr.
Re-arranging the factorials yields the claimed.
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(12) Theorem (Multivariate Faà di Bruno - Partition Form). Let x0 ∈ UE ⊂ E and set y0 := ϕ(x0) ∈ F .
Assume that ϕ : UE → F is pointwise k-fold Fréchet differentiable at x0 and that ψ : F → G is pointwise
k-fold Fréchet differentiable at y0. For u1, . . . , uk ∈ E we have:

Dk(ψ ◦ ϕ)(x0)[u1, . . . , uk] =
k∑

r=1

∑
π⊢[k]

|π|=r

Drψ(y0)
[
D|B1|ϕ(x0)[uB1 ], . . . , D|Br|ϕ(x0)[uBr ]

]
.

Proof. Fix u1, . . . , uk ∈ E. By translation, we may again assume x0 = 0 and y0 = 0 throughout the
proof. Fix Taylor decompositions ϕ = P +R, ψ = Q+ S with P,Q polynomial of degree ≤ k. By (9) we
have T k

0 ψ ◦ ϕ = π≤k(Q ◦ P ), and hence Dk(ψ ◦ ϕ)(0) = Polk(Q ◦ P ).
Write the polynomial maps in polarized form as

P (x) =
k∑

m=1

1
m! Pm[x⊗m], Q(y) =

k∑
r=1

1
r! Qr[y⊗r].

Expanding Qr by multilinearity and isolating the degree k term gives:

πkQ(P (x)) =
k∑

r=1

∑
m1,...,mr≥1

m1+···+mr=k

1
r!Qr

[ 1
m1!Pm1 [x⊗m1 ], . . . , 1

mr!Pmr
[x⊗mr ]

]
.

Applying Polk on both sides making use of the composition formula from Lemma (11) now gives:

Dk(ψ ◦ ϕ)(0)[u1, . . . , uk] =
k∑

r=1

∑
m1,...,mr≥1

m1+···+mr=k

∑
(B1,...,Br)|=[k]

|Bi|=mi

1
r!Qr

[
Pm1 [uB1 ], . . . , Pmr

[uBr
]
]
.

Now observe that there are exactly r! re-orderings of each ordered partition (B1, . . . , Br), and these re-
orderings yield the same summand as Qr is symmetric. Hence the sum over mi, B |= [k] can be replaced
by a single sum over un-ordered partitions π ⊢ [k] with given block sizes |Bi| = mi. Furthermore we have
Qr = Drψ(0), Pm = Dmϕ(0) by definition. Substituting these into the above formulas yields the claim.

7 Faa di Bruno - Multi-index Form

(13) Definition (Multi-Indices).

• Elements ν = (ν1, . . . , νd) ∈ Nd
0 are called multi-indices of dimension d. We write |ν| =

∑
i νi for the

degree and ν! := ν1! · · · νd! for the factorial.
• If A is a commutative algebra and v ∈ Ad is a d-tuple, then we write: vν =

∏
i v

νi
i ∈ A.

• If E = Rd, write x1, . . . , xd : E → R for the coordinate projections, then the set xν , ν ∈ Nd
0 is a basis

of Polynomial functions P(E).
• If U ⊂ Rd is open and ϕ : U → F is pointwise k-fold Fréchet differentiable at x0 ∈ U . Let ν ∈ Nd

0 with
k = |ν|. We define the partial derivative ∂νϕ(x0) ∈ F via the basis expansion of T k

x0
ϕ ∈ P(Rd, F ) =

P(Rd) ⊗ F as coefficient of xν/ν!:

T k
x0
ϕ =

∑
1≤|ν|≤k

xν

ν! ∂
νϕ(x0).
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(14) Theorem (Multivariate Faà di Bruno - Multi-index form). Let x0 ∈ U ⊂ Rd and set y0 := ϕ(x0) ∈
Rn. Assume that ϕ : U → Rn is pointwise k-fold Fréchet differentiable at x0 and that f : Rn → R is
pointwise k-fold Fréchet differentiable at y0.

For α ∈ Nd
0, α ̸= 0 the partial derivative of the composition are given by:

∂α(f ◦ ϕ)(x0)
α! =

∑
β∈Nn

0

1≤|β|≤|α|

∂βf(y0)
∑
s≥1

∑
(∗)

s∏
r=1

1
βr!

(
∂αrϕ(x0)

)βr

αr!|βr| ,

Where (∗) runs over all (α1, . . . , αs; β1, . . . , βs) with αj ∈ Nd
0, βj ∈ Nn

0 , αj ̸= 0, βj ̸= 0 and α1 < · · · < αs

for a total order on Nd
0 satisfying the constraints: α1|β1| + · · · + αs|βs| = α and β1 + · · · + βs = β.

Proof. We may assume that x0 = y0 = f(y0) = 0, without loss of generality.
Step 1: Taylor Expansion) Write x1, . . . , xd for the coordinate functions on Rd and y1, . . . , yn for the
coordinates on Rn. Expand the Taylor polynomials of ϕ and f as

P = T k
x0
ϕ =

∑
α∈Nd

0

1≤|α|≤k

xα

α! pα, F = T k
y0
f =

∑
β∈Nn

0

1≤|β|≤k

yβ

β! fβ ,

with pα = ∂αϕ(x0) ∈ Rn with components pi
α = ∂αϕ(i)(x0) and fβ = ∂βf(y0) ∈ R.

Step 2: Polynomial Composition) By Theorem (9) we have ∂ν(f ◦ ϕ)(0)/ν! = [xν ](F ◦ P ). We compute
[xν ](F ◦ P ) as follows: Let m ≥ 0. For each coordinate yi we have:

(yi ◦ P )m =
( ∑

α∈Nd
0

pi
α

α! x
α

)m

=
∑

α1,...,αm∈Nd
0

m∏
j=1

pi
αj

αj ! x
αj =

∑
ρi:Nd

0→N0∑
α

ρi(α)=m

( m!∏
α∈Nd

0
ρi(α)!

) ∏
α∈Nd

0

(pi
α

α! x
α

)ρi(α)
.

Note that there are only finitely many maps ρ : Nd
0 → N0 with

∑
α ρ(α) = n, and that each of those

maps is finitely supported i.e. ρ(α) = 0 except for finitely many α ∈ Nd
0. In the second step the map ρi

counts the number of occurrences of α in a given tuple (α1, . . . , αm), i.e. ρi(α) = # { j | αj = α }. For
each given map ρi we have m!/

∏
α∈Nd

0
ρi(α)! tuples which give the same map.

Now let β ∈ Nn
0 and apply this formula to each m = βi ∈ N0. Write ρ : Nd

0 → Nn
0 , ρ(α) =

(ρ1(α), . . . , ρn(α)), so that:

(y ◦ P )β =
n∏

i=1
(yi ◦ P )βi =

∑
ρ:Nd

0→Nn
0∑

α
ρ(α)=β

( n∏
i=1

βi!∏
α ρi(α)!

) n∏
i=1

∏
α∈Nd

0

(pi
α

α! x
α

)ρi(α)

= β!
∑

ρ:Nd
0→Nn

0∑
α

ρ(α)=β

( ∏
α∈Nd

0

1
ρ(α)!

(pα)ρ(α)

(α!)|ρ(α)|

)
x

∑
α

α|ρ(α)|.

Substituting into F (P (x)) and extracting the xα coefficient gives:
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∂α(f ◦ ϕ)(0)
α! = [xα] (F ◦ P ) = [xα]

∑
β∈Nn

0

fβ

β! (y ◦ P )β =
∑

β∈Nn
0

fβ

∑
ρ (∗)

( ∏
γ∈Nd

0

1
ρ(γ)!

(pγ)ρ(γ)

(γ!)|ρ(γ)|

)

Here (∗) runs over all maps ρ : Nd
0 → Nn

0 satisfying
∑

γ ρ(γ) = β and
∑

γ γ|ρ(γ)| = α. We convert this
sum into a tuple sum as follows: Fix a total order “<” on Nd

0 and write Supp(ρ) = {α1 < · · · < αs} ⊂
Nd

0. Setting βj = ρ(αj) ∈ Nn
0 for j = 1, . . . , s, the datum of a map ρ : Nd

0 → Nn
0 is equivalent to a

tuple (α1, . . . , αs;β1, . . . , βs) with αr ∈ Nd
0, βr ∈ Nn

0 \ 0 and α1 < · · · < αs. The constraints become:
β1 + · · · + βs = β and |β1|α1 + · · · + |βs|αs = α.
Since P (0) = 0, we have p0 = 0, so only tuples with αj ̸= 0 for all j contribute. The constraint
|β1|α1 + · · · + |βs|αs = α forces 1 ≤ |β| ≤ |α|: indeed |α| =

∑
j |αj ||βj | ≥

∑
j |βj | = |β| since |αj | ≥ 1,

and α ̸= 0 implies s ≥ 1 hence β ̸= 0. This concludes the proof.

As a by-product of the proof, we obtain the following map-form of the Faa di Bruno:

(15) Corollary (Map-Form Faa di Bruno). In the setting of (14) we have the following formula:

∂α(f ◦ ϕ)(x0)
α! =

∑
β∈Nn

0

∂βf(y0)
∑
ρ (∗)

( ∏
γ∈Nd

0

1
ρ(γ)!

(∂γϕ)ρ(γ)

(γ!)|ρ(γ)| .
)

Here (∗) runs over all maps ρ : Nd
0 \ 0 → Nn

0 satisfying
∑

γ ρ(γ) = β and
∑

γ γ|ρ(γ)| = α.

IRemark (Factorials and Symmetry). Controlling the complexity of combinatorial expressions is a
key technical difficulty when working with Faà di Bruno. An important insight in this presentation is that
factorials are always associated with symmetrization: passing from multilinear maps to polynomials via
diagonal evaluation, or quotienting out ordering information (e.g., from ordered to unordered partitions).
Formulas are often simpler when symmetry is not yet imposed. We deliberately keep each factorial adjacent
to the corresponding symmetrized quantity to make the combinatorics transparent.

8 Leibniz Formula

As an example demonstrating the utility of the Faà di Bruno formula in composition form, we provide a
general Leibniz rule.

(16) Proposition (Leibniz rule). Let E be a real normed vector space and let f1, . . . , fn : E → R be
k-times Fréchet differentiable at a point x ∈ E. Denote by T̃ k

x (f) = f(x) + T k
x (f) =

∑k
m=0

1
m!D

mf [h⊗m]
the augmented Taylor polynomial (including the degree=0) term. Then:

1. (Taylor form).
T̃ k

x (f1 · · · fn) = π≤k(T̃ k
x (f1) · · · T̃ k

x (fn)).

2. (Partition form.) For u1, . . . , uk ∈ E,

Dk(f1 · · · fn)(x)[u1, . . . , uk] =
∑

(B1,...,Bn)|=[k]

D|B1|f1(x)[uB1 ] · · ·D|Bn|fn(x)[uBn
]

Where we use the identity D0fi(x)[] = fi(x) for the empty block.
3. (Multi-index form.) If E = Rd and ν ∈ Nd

0 with |ν| = k, then

∂ν

ν! (f1 · · · fn)(x) =
∑

ν1,...,νn∈Nd
0

ν1+···+νn=ν

∂ν1f1(x)
ν1! · · · ∂

νnfn(x)
νn!
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where the sum ranges over all tuples (ν1, . . . , νn) ∈ (Nd
0)n with νi ∈ Nd

0 with ν1 + · · · + νn = ν.

Proof. For k = 0 both expressions are trivially true. Hence we may assume k ≥ 1.
Ad 1) Set ϕ = (f1, . . . , fn) : E → Rn, and ψ(y) =

∏n
i=1 yi : Rn → R, ci = fi(x) so that ψ ◦ ϕ = f1 · · · fn

and c = ϕ(x).
As ψ(y) =

∏n
i=1 yi is a polynomial itself, the Taylor polynomial at c can be calculated by translation and

degree truncation: T k
c ψ(h) = π≤k(ψ(c+ h) −ψ(c)). Furthermore T k

xϕ = (T k
x f1, . . . , T

k
x fn) ∈ P(E,Rn) =

P(E) ⊗ Rn.
Now Faa di Bruno in Composition form (Theorem (9)) yields T k

x (f1 · · · fn) = π≤k(
∏n

i=1(ci + T k
x fi) −∏n

i=1 ci). Adding
∏n

i=1 ci on both sides gives the claimed identity:

T̃ k
x (f1 · · · fn) = π≤k(T̃ k

x (f1) · · · T̃ k
x (fn)).

Ad 2) The partition formula is derived by applying Polk to both sides of (1). We hence find:

Dk(f1 · · · fn)(x) = Polk
n∏

i=1

k∑
m=0

1
m!D

mfi(x)[h⊗m] = Polk
∑

m1,...,mn∈N0

m1+···+mn=k

n∏
i=1

1
mi!

Dmifi(x)[h⊗mi ].

The claim follows by the Polarization Lemma (11) applied to B[a1, . . . , an] =
∏
ai.

Ad 3) Expanding the taylor series in multi-index form T̃ k
x fi(h) =

∑
0≤|µ|≤k

hµ

µ! ∂
µfi(x), we find:

∂νF (x)
ν! = [hν ]

n∏
i=1

∑
0≤|µ|≤k

hµ

µ! ∂
µfi(x) =

∑
ν1+···+νn=ν

∂ν1f1(x)
ν1! · · · ∂

νnfn(x)
νn! .
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